Practice test 1

The actual test will consist of 6 multiple choice questions and 6 regular problems. You will have 1 hour to complete the exam.

Multiple choice questions: circle the correct answer

1. The function $f(x) = \sin(x) + x^2$ is

A. even

B. odd

C. both even and odd

D. neither even nor odd

2. If we shift the graph of $y = \sin(x)$ 2 units to the left, then the equation of the new graph is

A. $y = \sin(x) + 2$ **B.** $y = \sin(x) - 2$ **C.** $y = \sin(x+2)$ **D.** $y = \sin(x-2)$

E. $y = \sin(x/2)$

3. The domain of the function $f(x) = \frac{1}{\sqrt{x-1}}$ is the set of all real numbers x for which

A. x > 0

B. $x \neq 0$ **C.** $x \geq 1$ **D.** x > 1

E. $x \neq 1$

4. Simplify $\frac{1+x}{x} - \frac{\frac{1}{x}+1}{x+1}$.

A. 1

B. *x*

C. x + 1 D. $\frac{1}{x}$

E. $\frac{x-1}{x+1}$

5. Let $f(x) = \begin{cases} -x - 2 & \text{if } x < -1 \\ x - 3 & \text{if } -1 \le x \le 1 \\ 2 - x^2 & \text{if } x > 1 \end{cases}$. Find f(1).

A. -3

B. -2

 $C_{*}-1$

D. 0

E. 1

6. If f(x) = 1 + x and $g(x) = x^2 - 6$, find $(f \circ g)(-2)$.

A. -9 **B.** -7 **C.** -5

D. -1

E. Undefined

- 7. The function $f(x) = \begin{cases} -x 1 & \text{if } x < -1 \\ 0 & \text{if } -1 \le x \le 1 \\ x & \text{if } x > 1 \end{cases}$ is
 - A. continuous everywhere
 - **B.** continuous at 1 but discontinuous at -1
 - \mathbf{C} . continuous at -1 but discontinuous at 1
 - **D.** continuous at all points except for 1 and -1
 - E. discontinuous everywhere

Regular problems: show all your work

- 8. Use transformations of functions to sketch the graphs of:
 - (a) $(x-3)^2$
 - (b) $3\cos x + 2$
 - (c) $-\sin\left(x \frac{\pi}{2}\right)$
 - (d) e^{-x-1}
- 9. Find a formula for the function whose graph is obtained from the graph of $f(x) = e^x 1$ by
 - (a) Reflecting about the y-axis and then compressing horizontally by a factor of 2.
 - (b) Vertically compressing by a factor of 5 and then shifting 3 units to the left.
 - (c) Reflecting about the x-axis and then shifting 2 units down.
- 10. Let f(x) = 2 x, $g(x) = \frac{1}{x}$, $h(x) = \sqrt{x+1}$. Find the following functions and their domains:
 - (a) f + g
 - (b) f g
 - (c) fg
 - (d) $\frac{f}{g}$
 - (e) $g \circ f$
 - (f) $f \circ h$
 - (g) $g \circ h$
 - (h) $f \circ g \circ h$
- 11. Find the distance between (-4,3) and (2,11).

- 12. Write an equation of the circle
 - (a) whose radius is 3 and center is at (3, -4)
 - (b) whose center is at (-2,0) and that passes through the point (1,4)
- 13. Write an equation of the line that
 - (a) has slope 2 and passes through the point (-1,3)
 - (b) passes throught the points (-1,3) and (0,-6)
 - (c) is parallel to the line y = 7x 1 and passes through (0, -6)
 - (d) is perpendicular to the line y = 7x 1 and passes through (0, -6)
- 14. Evaluate the following expressions:
 - (a) $\sin\left(\frac{\pi}{6}\right)$
 - (b) $\cos\left(\frac{\pi}{4}\right)$
 - (c) $\tan\left(-\frac{\pi}{3}\right)$
 - (d) $\sec\left(\frac{2\pi}{3}\right)$
- 15. Evaluate the limits:
 - (a) $\lim_{x \to 5} (7x 25)$
 - (b) $\lim_{x \to -1} \frac{x^3 + x^2}{x^2 + 3x + 2}$
 - (c) $\lim_{x\to 0} \frac{3-\sqrt{9+x}}{x}$
 - (d) $\lim_{x\to 0} x^4 \cos\left(\frac{1}{x}\right)$
- 16. Show that the equation $x^5 4x + 2 = 0$ has at least one solution in the interval (1,2).

3

17. Find all values of c such that the function

(a)
$$f(x) = \begin{cases} cx & \text{if } x \ge 2\\ 5 - x & \text{if } x < 2 \end{cases}$$

(b)
$$f(x) = \begin{cases} x^2 & \text{if } x \le c \\ x^3 & \text{if } x > c \end{cases}$$

is continuous everywhere.