Practice test 1 - Solutions

Multiple choice questions: circle the correct answer

1. The function $f(x)=\sin (x)+x^{2}$ is
A. even
B. odd
C. both even and odd
D. neither even nor odd
2. If we shift the graph of $y=\sin (x) 2$ units to the left, then the equation of the new graph is
A. $y=\sin (x)+2$
B. $y=\sin (x)-2$
C. $y=\sin (x+2)$
D. $y=\sin (x-2)$
E. $y=\sin (x / 2)$
3. The domain of the function $f(x)=\frac{1}{\sqrt{x-1}}$ is the set of all real numbers x for which
A. $x>0$
B. $x \neq 0$
C. $x \geq 1$
(D. $x>1$
E. $x \neq 1$
4. Simplify $\frac{1+x}{x}-\frac{\frac{1}{x}+1}{x+1}$.
(A.) 1
B. x
C. $x+1$
D. $\frac{1}{x}$
E. $\frac{x-1}{x+1}$

A. -3
(B.) -2
C. -1
D. 0
E. 1
5. If $f(x)=1+x$ and $g(x)=x^{2}-6$, find $(f \circ g)(-2)$.
A. -9
B. -7
C. -5
(D. -1
E. Undefined
6. The function $f(x)=\left\{\begin{array}{ll}-x-1 & \text { if } x<-1 \\ 0 & \text { if }-1 \leq x \leq 1 \\ x & \text { if } x>1\end{array} \quad\right.$ is
A. continuous everywhere
B. continuous at 1 but discontinuous at -1
C. continuous at -1 but discontinuous at 1
D. continuous at all points except for 1 and -1
E. discontinuous everywhere
(because there is a break in the graph at 1 but not at -1)

Regular problems: show all your work

8. Use transformations of functions to sketch the graphs of:
(a) $(x-3)^{2}$

Shift the curve $y=x^{2} 3$ units to the right:

(b) $3 \cos x+2$

Stretch the curve $y=\cos x$ vertically by a factor of 3 and then shift 2 units upward:

(c) $-\sin \left(x-\frac{\pi}{2}\right)$

Shift the curve $y=\sin x \frac{\pi}{2}$ units to the right and then reflect about the x-axis:

(d) e^{-x-1}

Shift the curve $y=e^{x} 1$ unit to the right and then reflect about the y-axis:

9. Find a formula for the function whose graph is obtained from the graph of $f(x)=e^{x}-1$ by
(a) Reflecting about the y-axis and then compressing horizontally by a factor of 2 .

Reflecting about the y-axis: $y=e^{-x}-1$
Compressing horizontally by a factor of 2: $y=e^{-2 x}-1$
(b) Vertically compressing by a factor of 5 and then shifting 3 units to the left.

Vertically compressing by a factor of $5: y=\frac{e^{x}-1}{5}$
Shifting 3 units to the left: $y=\frac{e^{x+3}-1}{5}$
(c) Reflecting about the x-axis and then shifting 2 units down.

Reflecting about the x-axis: $y=-\left(e^{x}-1\right)=-e^{x}+1$
Shifting 2 units down: $y=-e^{x}+1-2=-e^{x}-1$
10. Let $f(x)=2-x, g(x)=\frac{1}{x}, \quad h(x)=\sqrt{x+1}$. Find the following functions and their domains:
(a) $(f+g)(x)=2-x+\frac{1}{x}$

Domain $=(-\infty, 0) \cup(0, \infty)$
(b) $(f-g)(x)=2-x-\frac{1}{x}$

Domain $=(-\infty, 0) \cup(0, \infty)$
(c) $(f g)(x)=(2-x) \cdot \frac{1}{x}=\frac{2-x}{x}$

Domain $=(-\infty, 0) \cup(0, \infty)$
(d) $\left(\frac{f}{g}\right)(x)=\frac{2-x}{\frac{1}{x}}=2 x-x^{2}($ if $x \neq 0)$

Domain $=(-\infty, 0) \cup(0, \infty)$
(e) $(g \circ f)(x)=\frac{1}{2-x}$

Domain $=(-\infty, 2) \cup(2, \infty)$
(f) $(f \circ h)(x)=2-\sqrt{x+1}$

Domain $=[-1, \infty)$
(g) $(g \circ h)(x)=\frac{1}{\sqrt{x+1}}$

Domain $=(-1, \infty)$
(h) $(f \circ g \circ h)(x)=2-\frac{1}{\sqrt{x+1}}$

Domain $=(-1, \infty)$
11. Find the distance between $(-4,3)$ and $(2,11)$.
$D=\sqrt{(2-(-4))^{2}+(11-3)^{2}}=\sqrt{6^{2}+8^{2}}=\sqrt{36+64}=\sqrt{100}=10$
12. Write an equation of the circle
(a) whose radius is 3 and center is at $(3,-4)$

$$
(x-3)^{2}+(y-(-4))^{2}=3^{2}
$$

$(x-3)^{2}+(y+4)^{2}=9$
(b) whose center is at $(-2,0)$ and that passes through the point $(1,4)$
$r=\sqrt{(1-(-2))^{2}+(4-0)^{2}}=\sqrt{3^{2}+4^{2}}=\sqrt{25}=5$
$(x-(-2))^{2}+(y-0)^{2}=5^{2}$
$(x+2)^{2}+y^{2}=25$
13. Write an equation of the line that
(a) has slope 2 and passes through the point $(-1,3)$
$y-3=2(x-(-1))$
$y-3=2(x+1)$
$y-3=2 x+2$
$y=2 x+5$
(b) passes throught the points $(-1,3)$ and $(0,-6)$

$$
\begin{aligned}
& m=\frac{-6-3}{0-(-1)}=\frac{-9}{1}=-9 \\
& y-3=-9(x-(-1)) \\
& y-3=-9(x+1) \\
& y-3=-9 x-9 \\
& y=-9 x-6
\end{aligned}
$$

(c) is parallel to the line $y=7 x-1$ and passes through $(0,-6)$

$$
\begin{aligned}
& m=7 \\
& b=-6 \\
& y=7 x-6
\end{aligned}
$$

(d) is perpendicular to the line $y=7 x-1$ and passes through $(0,-6)$

$$
\begin{aligned}
& m=-\frac{1}{7} \\
& b=-6 \\
& y=-\frac{1}{7} x-6
\end{aligned}
$$

14. Evaluate the following expressions:
(a) $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$
(b) $\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$
(c) $\tan \left(-\frac{\pi}{3}\right)=\frac{\sin \left(-\frac{\pi}{3}\right)}{\cos \left(-\frac{\pi}{3}\right)}=\frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}}=-\sqrt{3}$
(d) $\sec \left(\frac{3 \pi}{4}\right)=\frac{1}{\cos \left(\frac{3 \pi}{4}\right)}=\frac{1}{-\frac{\sqrt{2}}{2}}=-\frac{2}{\sqrt{2}}=-\sqrt{2}$
15. Evaluate the limits:
(a) $\lim _{x \rightarrow 5}(7 x-25)=7 \cdot 5-25=10$
(b) $\lim _{x \rightarrow-1} \frac{x^{3}+x^{2}}{x^{2}+3 x+2}=\lim _{x \rightarrow-1} \frac{x^{2}(x+1)}{(x+1)(x+2)}=\lim _{x \rightarrow-1} \frac{x^{2}}{x+2}=1$
(c) $\lim _{x \rightarrow 0} \frac{3-\sqrt{9+x}}{x}=\lim _{x \rightarrow 0} \frac{(3-\sqrt{9+x})(3+\sqrt{9+x})}{x(3+\sqrt{9+x})}=\lim _{x \rightarrow 0} \frac{3^{2}-(\sqrt{9+x})^{2}}{x(3+\sqrt{9+x})}=$
$\lim _{x \rightarrow 0} \frac{9-(9+x)}{x(3+\sqrt{9+x})}=\lim _{x \rightarrow 0} \frac{-x}{x(3+\sqrt{9+x})}=\lim _{x \rightarrow 0} \frac{-1}{3+\sqrt{9+x}}=-\frac{1}{6}$
(d) $\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{1}{x}\right)=0$ by the squeeze theorem since $-x^{4} \leq x^{4} \cos \left(\frac{1}{x}\right) \leq x^{4}$ and $\lim _{x \rightarrow 0}\left(-x^{4}\right)=\lim _{x \rightarrow 0}\left(x^{4}\right)=0$.
16. Show that the equation $x^{5}-4 x+2=0$ has at least one solution in the interval $(1,2)$.

Let $f(x)=x^{5}-4 x+2$. Then $f(x)$ is a continuous function with $f(1)=-1<0$ and $f(2)=26>0$. By the intermediate value theorem, there is a point c between 1 and 2 such that $f(c)=0$.
17. Find all values of c such that the function $f(x)$ is continuous everywhere.
(a) $f(x)=\left\{\begin{array}{rrr}c x & \text { if } & x \geq 2 \\ 5-x & \text { if } & x<2\end{array}\right.$

Since linear functions are continuous everywhere, $f(x)$ is continuous at all poits except possibly at 2 . It is continuous at 2 if and only if the functions $c x$ and $5-x$ agree at 2 (that is, they have the same value at 2 . The graph of $f(x)$ then has no jump at 2.) So we set the values of $c x$ and $5-x$ at 2 equal:
$c \cdot 2=5-2$
$2 c=3$
$c=\frac{3}{2}$
(b) $f(x)=\left\{\begin{array}{lll}x^{2} & \text { if } & x \leq c \\ x^{3} & \text { if } & x>c\end{array}\right.$

Since polynomial functions are continuous everywhere, $f(x)$ is continuous at all poits except possibly at c. It is continuous at c if and only if the values of x^{2} and x^{3} agree at c, i.e.
$c^{2}=c^{3}$
$c^{2}-c^{3}=0$
$c^{2}(1-c)=0$
$c=0$ or $c=1$.

