Review - 2
 THEORY

Infinite limits and vertical asymptotes

Def. $\lim _{x \rightarrow a} f(x)=\infty$ means that the values of $f(x)$ can be made arbitrarily large by taking x sufficiently close to a, but not equal to a.

Def. $\lim _{x \rightarrow a} f(x)=-\infty$ means that the values of $f(x)$ can be made arbitrarily large negative by taking x sufficiently close to a, but not equal to a.

$\lim _{x \rightarrow a} f(x)=\infty$

$\lim _{x \rightarrow a} f(x)=-\infty$

The definitions for one-sided infinite limits are similar. Here are the pictures:

$\lim _{x \rightarrow a^{-}} f(x)=\infty$

$$
\lim _{x \rightarrow a^{+}} f(x)=\infty
$$

$$
\lim _{x \rightarrow a^{-}} f(x)=-\infty
$$

$$
\lim _{x \rightarrow a^{+}} f(x)=-\infty
$$

If at least one of these 4 conditions holds, the line $x=a$ is called a vertical asymptote of $y=f(x)$.

Limits at infinity and horizontal asymptotes

Def. $\lim _{x \rightarrow \infty} f(x)=L$ means that the values of $f(x)$ can be made arbitrarily close to L by taking x to be sufficiently large.

Def. $\lim _{x \rightarrow-\infty} f(x)=L$ means that the values of $f(x)$ can be made arbitrarily close to L by taking x to be sufficiently large negative.

If at least one of the above conditions holds, then the line $y=L$ is called a horizontal asymptote of $y=f(x)$.

Thus, to find the horizontal asymptotes of $y=f(x)$, find the limits $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$ (if they exist. If neither of these limits exist, then the curve $y=f(x)$ does not have horizontal asymptotes.)

Useful formulas

$$
\begin{gathered}
(a+b)^{2}=a^{2}+2 a b+b^{2}, \quad(a-b)^{2}=a^{2}-2 a b+b^{2} \\
(a+b)(a-b)=a^{2}-b^{2} \\
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}, \\
a^{3}+b^{3}=(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3} \\
\left(a+a^{2}-a b+b^{2}\right), \\
a^{3}+b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
\end{gathered}
$$

Derivative

Definition. The derivative of $f(x)$ at a point a is

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

(if this limit exists. In this case we say that $f(x)$ is differentiable at a. If the limit does not exist, then $f(x)$ is not differentiable at a.)
$f^{\prime}(a)$ is called the rate of change of $f(x)$ with respect to x at $(a, f(a))$.
The slope of the tangent line to $y=f(x)$ at $(a, f(a))$ is equal to $f^{\prime}(a)$.
The tangent line to $y=f(x)$ at $(a, f(a))$ has equation $y-f(a)=f^{\prime}(a)(x-a)$.
The derivative of $f(x)$ is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Differentiation rules

- Sum rule: $(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$
- Difference rule: $(f(x)-g(x))^{\prime}=f^{\prime}(x)-g^{\prime}(x)$
- Constant multiple rule: $(c f(x))^{\prime}=c f^{\prime}(x)$ for any constant c
- Product rule: $(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
- Quotient rule: $\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g^{2}(x)}$
- Chain rule: $(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$

Derivatives of some important functions

- Constant function: $(c)^{\prime}=0$
- Power function: $\left(x^{n}\right)^{\prime}=n x^{n-1}$
- Special cases of the power function: $\quad(x)^{\prime}=1, \quad(\sqrt{x})^{\prime}=\frac{1}{2 \sqrt{x}}, \quad\left(\frac{1}{x}\right)^{\prime}=-\frac{1}{x^{2}}$
- Trigonometric functions: $(\sin x)^{\prime}=\cos x, \quad(\cos x)^{\prime}=-\sin x$
$(\tan x)^{\prime}=\sec ^{2} x, \quad(\cot x)^{\prime}=-\csc ^{2} x$,
$(\sec x)^{\prime}=\sec x \tan x, \quad(\csc x)^{\prime}=-\csc x \cot x$

Applications of derivatives

- The derivative $f^{\prime}(a)$ is the slope of the tangent line to the curve $y=f(x)$ at $(a, f(a))$. Thus the tangent line to $y=f(x)$ at $(a, f(a))$ has equation

$$
y-f(a)=f^{\prime}(a)(x-a) .
$$

- The derivative $f^{\prime}(a)$ is the rate of change of $y=f(x)$ when $x=a$.
- If $s(t)$ is the position of an object at time t, then its velocity is $v(t)=s^{\prime}(t)$, and its acceleration is $a(t)=v^{\prime}(t)$.
- If $n=f(t)$ is the size of a (plant or animal) population, then $f^{\prime}(t)$ is the rate of growth of the population.
- If $C(x)$ is the cost of producing x units of a certain product, then $C^{\prime}(x)$ is the marginal cost function.

Laws of exponents

- $(a b)^{c}=a^{c} b^{c}$
- $a^{b} \cdot a^{c}=a^{b+c}$
- $\frac{a^{b}}{a^{c}}=a^{b-c}$
- $\left(a^{b}\right)^{c}=\left(a^{c}\right)^{b}=a^{b c}$
- $\sqrt[b]{a}=a^{1 / b}$
- $\frac{1}{a^{b}}=a^{-b}$
- $a^{0}=1$
- $a^{1}=a$

