## Practice test 3

The actual exam will consist of 6 multiple choice questions and 6 regular problems. You will have 50 minutes to complete the exam.

## Multiple choice questions: circle the correct answer

1. Solve for $x: \log _{\frac{1}{2}} x=3$.
A. 6
B. $\frac{1}{6}$
C. 8
D. $\frac{1}{8}$
E. None of the above
2. If $f(x)=x+\ln (x)$, find $f^{\prime}(x)$.
A. $\frac{x+1}{x}$
B. $\frac{1}{x}$
C. $1-\frac{1}{x}$
D. $\frac{x}{x+1}$
E. $\frac{x}{x-1}$
3. If $f(x)=4^{3 x}$, find $f^{\prime}(x)$.
A. $4^{3 x}$
B. $3 \cdot 4^{3 x}$
C. $12^{3 x}$
D. $\ln (4) 4^{3 x}$
E. $3 \ln (4) 4^{3 x}$
4. Find the inverse function of $f(x)=x-2$.
A. $-x-2$
B. $-x+2$
C. $x-2$
D. $x+2$
E. $\frac{1}{x-2}$
5. Find the inverse function of $f(x)=3^{x}$.
A. $-3^{x}$
B. $\frac{1}{3^{x}}$
C. $\log _{3} x$
D. $\log _{x} 3$
E. None of the above
6. Simplify: $\frac{\ln 8}{\ln 2}$
A. 3
B. $\ln 3$
C. 4
D. $\ln 4$
E. $\ln 6$
7. What is the domain of the function $\ln x$ ?
A. $\mathbb{R}$
B. $(0,+\infty)$
C. $[0,+\infty)$
D. $x \neq 0$
E. None of the above

## Regular problems: show all your work

8. Find the inverse function of:
(a) $f(x)=5 x-4$
(b) $f(x)=(x+1)^{3}$
(c) $f(x)=e^{x}+5$
9. Find a formula for the function whose graph is obtained from the graph of $f(x)=e^{x}-1$ by
(a) Reflecting about the $y$-axis and then compressing horizontally by a factor of 2 .
(b) Vertically compressing by a factor of 5 and then shifting 3 units to the left.
(c) Reflecting about the $x$-axis and then shifting 2 units down.
10. Evaluate the following expressions:
(a) $\frac{2^{5} \sqrt{2^{20}}}{2^{18}}$
(b) $\log _{2} 32$
(c) $\log _{5}\left(\frac{1}{125}\right)$
(d) $\log _{4}\left(\frac{1}{2}\right)$
(e) $3^{\log _{3} 7}$
(f) $\log _{6} 2+\log _{6} 3$
(g) $3 \log _{8} 4$
11. Solve the following equations:
(a) $\ln (5 x-2)=3$
(b) $e^{3 t+1}=100$
(c) $\log _{2} t+\log _{2}(t+1)=1$
(d) $10^{4 x+1}=300$
12. Differentiate the following functions:
(a) $f(x)=\left(\frac{1}{2}\right)^{x}$
(b) $f(x)=5 e^{x}-8 \cdot 3^{x}+9 x^{2}$
(c) $f(x)=x^{2} \ln x$
(d) $f(x)=\frac{\log _{2} x-2 x}{2^{x}}$
(e) $f(x)=\ln \left(x^{3}+e^{x}\right)$
