Review - 3

THEORY

Inverse function

A function $f: A \rightarrow B$ is called one-to-one if it never takes on the same value twice, i.e. if for any $x_{1} \neq x_{2}$ in $A, f\left(x_{1}\right) \neq f\left(x_{2}\right)$ in B.

If $f: A \rightarrow B$ is a one-to-one function, then its inverse function is $f^{-1}: B \rightarrow A$ defined by $f^{-1}(x)=y$ if $f(y)=x$.

Cancellation laws: $f\left(f^{-1}(x)\right)=x, f^{-1}(f(x))=x$.
The graph of the inverse function is obtained by reflecting the graph of the original function about the line $y=x$.

Example: the exponential and logarithmic functions with the same base a are inverse functions of each other.

To find the inverse function of $f(x)$:

1. Write $y=f(x)$.
2. Solve $y=f(x)$ for x. You'll get the equation $x=f^{-1}(y)$.
3. Switch x and y in the obtained equation to get $y=f^{-1}(x)$.

Exponential and logarithmic functions: definitions

An exponential function is a function of the form $f(x)=a^{x}$ (where $a>0$).
A logarithmic function is a function of the form $f(x)=\log _{a} x$ (where $a>0, a \neq 0$) defined by

$$
\log _{a} x=y \quad \text { if } \quad a^{y}=x .
$$

For $a=e \approx 2.7: f(x)=e^{x}$ is called the natural exponential function; $f(x)=\log _{a} x=\ln x$ is called the natural logarithmic function.

Graphs of exponential and logarithmic functions

See sections 3.1 and 3.2.

Derivatives of exponential and logarithmic functions

- Exponential functions: $\quad\left(e^{x}\right)^{\prime}=e^{x}, \quad\left(a^{x}\right)^{\prime}=\ln (a) a^{x}$
- Logarithmic functions: $(\ln x)^{\prime}=\frac{1}{x}, \quad\left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a}$

Laws of exponents

- $a^{b} \cdot a^{c}=a^{b+c}$
- $\frac{a^{b}}{a^{c}}=a^{b-c}$
- $\left(a^{b}\right)^{c}=\left(a^{c}\right)^{b}=a^{b c}$
- $\sqrt[b]{a}=a^{1 / b}$
- $\frac{1}{a^{b}}=a^{-b}$
- $a^{0}=1$
- $a^{1}=a$

Laws of logarithms

- $\log _{a}(b c)=\log _{a} b+\log _{a} c$
- $\log _{a}\left(\frac{b}{c}\right)=\log _{a} b-\log _{a} c$
- $\log _{a}\left(b^{c}\right)=c \log _{a} b$
- $\log _{a} b=\frac{\log _{c} b}{\log _{c} a}$
- $\log _{a} 1=0$
- $\log _{a} a=1$

Cancellation laws

- $\log _{a}\left(a^{x}\right)=x$
- $a^{\log _{a} x}=x$
- $\ln \left(e^{x}\right)=x$
- $e^{\ln x}=x$

