Practice test 1 - Solutions

Multiple choice questions: circle the correct answer

1. Find the exact value of $\arcsin (1)$.
A. 0
(B. $\frac{\pi}{2}$
C. π
D. $\frac{3 \pi}{2}$
E. 2π
2. Find the exact value of $\arccos \left(\frac{1}{2}\right)$.
A. 0
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$
E. $\frac{\pi}{2}$
3. Find the exact value of $\sin \left(\arctan \left(\frac{3}{4}\right)\right)$.
A. $-\frac{3}{5}$
B. $-\frac{3}{4}$
C. $\frac{3}{5}$
D. $\frac{3}{4}$
E. $\frac{4}{5}$
4. Suppose 100 dollars are invested at an annual intererst rate of 10% while interest is compounded monthly. What is the ammount after 10 years?
A. $100\left(1+\frac{1}{120}\right)^{10}$
B. $100\left(1+\frac{1}{120}\right)^{120}$
C. $100\left(1+\frac{10}{12}\right)^{10}$
D. $120\left(1+\frac{10}{12}\right)^{100}$
E. $120\left(1+\frac{1}{120}\right)^{100}$
5. How many critical numbers does the function $y=x+\frac{1}{x}$ have?
A. 0
B. 1
C. 2
D. 3
E. infinitely many
6. Find the local maximum of $y=x+\frac{1}{x}$.
A. $x=-2$
B. $x=-1$
C. $x=0$
D. $x=1$
E. $x=2$

Regular problems: show all your work

7. (a) $3 x^{2} y^{3}+3 x^{3} y^{2} y^{\prime}-3 y^{3}-9 x y^{2} y^{\prime}+4 y^{\prime}=0$

$$
\left(3 x^{3} y^{2}-9 x y^{2}+4\right) y^{\prime}=3 y^{3}-3 x^{2} y^{3}
$$

$$
y^{\prime}=\frac{3 y^{3}-3 x^{2} y^{3}}{3 x^{3} y^{2}-9 x y^{2}+4}
$$

(b) $2^{3}-3 \cdot 2+4=6$
(c) $y^{\prime}(2)=\frac{3-3 \cdot 2^{2}}{3 \cdot 2^{3}-9 \cdot 2+4}=-\frac{9}{10}$
8. $\tan y+x \sec ^{2} y \cdot y^{\prime}+y+x y^{\prime}+3 y^{\prime}=0$
$\left(x \sec ^{2} y+x+3\right) y^{\prime}=-\tan y-y$
If $x=0$ and $y=0$, then $3 y^{\prime}(0)=0$, so the slope of the tangent line is 0 .
9. (a) Let x be the distance between the boy and the point P, let y be the distance between the girl and P, and let z be the distance between the boy and the girl.
Then $x^{2}+y^{2}=z^{2}$ where x, y, and z are functions of time.
Differentiating this equation with respect to t gives
$2 x x^{\prime}+2 y y^{\prime}=2 z z^{\prime}$
$x x^{\prime}+y y^{\prime}=z z^{\prime}$

45 minutes after the girl started walking (and thus 50 minutes after the boy started walking), $x=6 \cdot \frac{50}{60}=5, y=15-4 \cdot 4560=15-3=12$, and $z=\sqrt{5^{2}+12^{2}}=13$. x^{\prime} is the rate of change of x, i.e. the speed of the boy, so $x^{\prime}=6$, and y^{\prime} is the rate of change of y, i.e. negative the speed of the girl since y is decreasing, so $y^{\prime}=-4$. Therefore
$5 \cdot 6+12 \cdot(-4)=13 z$
Answer: $-\frac{18}{13}$, decreasing.
(b) Let x be the distance between the boy and the point P, let y be the distance between the girl and her starting point Q, and let z be the distance between the boy and the girl.

Then $(x+y)^{2}+15^{2}=z^{2}$ (see the figure)
Differentiating this equation with respect to t gives
$2(x+y)\left(x^{\prime}+y^{\prime}\right)=2 z z^{\prime}$
$(x+y)\left(x^{\prime}+y^{\prime}\right)=z z^{\prime}$

45 minutes after the girl started walking (and thus 50 minutes after the boy started walking), $x=6 \cdot \frac{50}{60}=5, y=4 \cdot 4560=3$, so $x+y=8$, and $z=\sqrt{8^{2}+15^{2}}=17$. x^{\prime} is the rate of change of x, i.e. the speed of the boy, so $x^{\prime}=6$, and y^{\prime} is the rate of change of y, i.e. the speed of the girl, so $y^{\prime}=4$. Therefore
$(5+3)(6+4)=17 z^{\prime}$
Answer: $\frac{80}{17}$, increasing.
10. $V(t)=\frac{4}{3} \pi(r(t))^{3}$
$V^{\prime}(t)=4 \pi(r(t))^{2} r^{\prime}(t)$
If $r^{\prime}=-1$ and $r=3, V^{\prime}(t)=4 \pi 3^{2} \cdot 1=36 \pi$
Answer: $36 \pi \mathrm{~cm}^{3} / \mathrm{min}$.
11. Since initially there are 800 bacteria, $P(t)=800 e^{k t}$. At $t=3$ we have: $2700=800 e^{k \cdot 3}$ $\left(e^{k}\right)^{3}=\frac{27}{8} e^{k}=\frac{3}{2}$. Then at $t=5: \quad P(5)=800 e^{k \cdot 5}=800\left(e^{k}\right)^{5}=800\left(\frac{3}{2}\right)^{5}=\frac{800 \cdot 3^{5}}{2^{5}}=$ $25 \cdot 343=6075$.
12. (a) $\left.f^{\prime}(x)=\frac{3}{\sqrt{1-9 x^{2}}}\right)$
(b) ' $g(x)=\tan ^{-1}(1-x)+\frac{-x}{1+(1-x)^{2}}$
(c) $h(x)=\frac{-\frac{\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}}-\arccos (x) \frac{-2 x}{2 \sqrt{1-x^{2}}}}{1-x^{2}}=\frac{-1+\frac{x \arccos (x)}{\sqrt{1-x^{2}}}}{1-x^{2}}$
13. (a) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{2 \sin 3 x}=\lim _{x \rightarrow 0} \frac{5 \cos 5 x}{6 \cos 3 x}=\frac{5}{6}$
(b) $\lim _{x \rightarrow 0} \frac{e^{x}(\cos x-1)}{\tan (3 x)}=1 \cdot \lim _{x \rightarrow 0} \frac{\cos x-1}{\tan (3 x)}=\lim _{x \rightarrow 0} \frac{-\sin x}{3 \sec ^{2}(3 x)}=0$
(c) $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}=\lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x}=\lim _{x \rightarrow 0} \frac{e^{x}}{2}=\frac{1}{2}$
(d) $\lim _{x \rightarrow \infty} x^{3} e^{-3 x}=\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{3 x}}=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{3 e^{3 x}}=\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{3 x}}=\lim _{x \rightarrow \infty} \frac{2 x}{3 e^{3 x}}=\lim _{x \rightarrow \infty} \frac{2}{9 e^{3 x}}=0$
(e) $\lim _{x \rightarrow \infty}\left(\frac{x}{x+1}\right)^{3 x}=\lim _{x \rightarrow \infty}\left(e^{\ln \frac{x}{x+1}}\right)^{3 x}=e^{\lim _{x \rightarrow \infty} \ln \frac{x}{x+1} \cdot 3 x}=e^{\lim _{x \rightarrow \infty} \frac{3 \ln \frac{x}{x+1}}{1 / x}}=$

14. $f^{\prime}(x)=3 x^{2}-6 x=0$ gives $x=0$ and $x=2$. Since $f^{\prime}(-1)>0, f^{\prime}(1)<0$, and $f^{\prime}(3)>0$, the point $x=0$ is a local minimum and the point $x=2$ is a local maximum.
15. Use the closed interval method:

1. Find the critical numbers: $f^{\prime}(x)=4 x^{3}+12 x^{2}=0$ gives $x=0$ and $x=-3$. However, -3 is not in our interval. Only 0 is.
2. Find the value of the function at the critical number(s): $f(0)=5$.
3. Find the value of the function at the endpoints of the interval: $f(-2)=-11$. The other endpoint is 0 , but we already found the value at 0 .
4. The largest of the above values, i.e. 5 , is the absolute maximum value of the function on the given interval, and the smallest of the above values, i.e. -11 , is the absolute minimum value.
5. Use the closed interval method:
6. Find the critical numbers: $f^{\prime}(x)=\cos x$. The only root on the given interval is $x=\frac{\pi}{2}$.
7. Find the value of the function at the critical number $(\mathrm{s}): f\left(\frac{\pi}{2}\right)=1$.
8. Find the value of the function at the endpoints of the interval: $f(0)=0, f\left(\frac{5 \pi}{4}\right)=$ $-\frac{1}{\sqrt{2}}$.
9. The largest of the above values, i.e. 1 , is the absolute maximum value of the function on the given interval, and the smallest of the above values, i.e. $-\frac{1}{\sqrt{2}}$, is the absolute minimum value.
10. Let $f(x)=x^{7}+3 x^{3}+x$. Since the funtion $f(x)$ is continuous, $f(0)<4$ and $f(1)>4$, by the Intermediate Value Theorem the equation $f(x)=4$ has at least one real root. However, since $f^{\prime}(x)=7 x^{6}+9 x^{2}+1>0$, by Rolle's Theorem this equation cannot have more than one real root. Thus it has exactly one real root.
