## MATH 75B

## Test 3 - Solutions

1. C

$$
\int_{-1}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{-1} ^{1}=\frac{1^{3}}{3}-\frac{(-1)^{3}}{3}=\frac{2}{3}
$$

2. A

$$
\left(\int_{x}^{3} \cos (\sqrt{t}) d t\right)^{\prime}=\left(-\int_{3}^{x} \cos (\sqrt{t}) d t\right)^{\prime}=-\cos (\sqrt{x}) .
$$

3. C

Draw graphs of a few increasing functions and try all choices of sample points (draw rectangles).
4. C

$$
\Delta x=\frac{b-a}{n}=\frac{9-(-3)}{6}=2
$$

5. C

To see that C is correct, draw a graph of any function (e.g. $f(x)=e^{x}$ would work well for this example), draw the graph of $f(-x)$, and interpret both integrals in terms of areas. A and B are incrrect as was discussed a number of times in class. D is incorrect; in fact, by definition $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$. E is incorrect as can be seen e.g. for $f(x)=e^{x}$.
6. D

Draw all the lines, identify the region, and divide the region into trapezoids and/or rectangles and/or triangles - there are multiple ways of doing that.
7. For n subintervals we have $\Delta x=\frac{3}{n}$ and $x_{i}=\frac{3}{n} i$.

Then $R_{n}=\sum_{i=1}^{n}\left(2\left(\frac{3}{n} i\right) \frac{3}{n}\right)=\sum_{i=1}^{n}\left(\frac{18}{n^{2}} i\right)=\frac{18}{n^{2}} \sum_{i=1}^{n} i=\frac{18}{n^{2}} \cdot \frac{n(n+1)}{2}=\frac{18 n(n+1)}{2 n^{2}}=$ $\frac{9(n+1)}{n}$.

Now, $\int_{0}^{3} 2 x d x=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \frac{9(n+1)}{n}=9$.
8. (a) This integral represents the area of the triangle (sketch it) with base 3 and height 6. The area is 9 .
(b) $\int_{0}^{3} 2 x d x=\left.x^{2}\right|_{0} ^{3}=3^{2}-0^{2}=9$.
9. Using the substitution $u=x^{3}, \frac{d u}{d x}=3 x^{2}, \frac{1}{3} d u=x^{2} d x$ :
$\int x^{2} \sin \left(x^{3}\right) d x=\frac{1}{3} \int \sin (u) d u=-\frac{1}{3} \cos (u)+C=-\frac{1}{3} \cos \left(x^{3}\right)+C$
10. Since $y=\sqrt{4-x^{2}}$ is the equation of the top half of the circle with center at the origin and radius 2 ,
$\int_{-2}^{0} \sqrt{4-x^{2}} d x$ represents the area of $1 / 4$ of the circle, so $\int_{-2}^{0} \sqrt{4-x^{2}} d x=\frac{1}{4} \pi(2)^{2}=\pi$.
11. The acceleration is $a(t)=\frac{v(10)-v(0)}{10}=\frac{0-60}{10}=-6$. So we have $a(t)=-6$ and $v(0)=60$. By antidifferentiating we find $v(t)=-6 t+C$. Since $v(0)=60, C=60$, so $v(t)=$ $-6 t+60$. Then distance can be found by
$\int_{0}^{10} v(t) d t=\int_{0}^{10}(-6 t+60) d t=\left.\left(-3 t^{2}+60 t\right)\right|_{0} ^{10}=\left(-3(10)^{2}+60(10)\right)-0=-300+600=$ 300 ft .
12. First, $\int_{0}^{10} 2 f(x) d x=18$ implies that $\int_{0}^{10} f(x) d x=9$. Next, together with $\int_{0}^{5} f(x)=$ $6 d x$, this gives $\int_{5}^{10} f(x) d x=9-6=3$. Finally, $\int_{5}^{10}(f(x)+1) d x=\int_{5}^{10} f(x) d x+$ $\int_{5}^{10} 1 d x=3+5=8$.

