MATH 75B

Test 3

December 4, 2009

This test is to be taken on a furlough day. It is take-home, self-check, and not part of your grade.

Name:

- No books or calculators are allowed.
- You may use the unit circle. However, no other notes are allowed.
- You may need the following formula: $1+2+\ldots+n=\frac{n(n+1)}{2}$.
- Please show all your work for problems 7-12.

Multiple choice questions: circle the correct answer

1. $\int_{-1}^{1} x^{2} d x=$
A. $-\frac{2}{3}$
B. 0
C. $\frac{2}{3}$
D. undefined
E. none of the above
2. Find the derivative of $f(x)=\int_{x}^{3} \cos (\sqrt{t}) d t$.
A. $-\cos (\sqrt{x})$
B. $\cos (\sqrt{x})$
C. $\cos (\sqrt{3})-\cos (\sqrt{x})$
D. $\frac{\sin (\sqrt{t})}{2 \sqrt{t}}$
E. none of the above
3. If $f(x)$ is always increasing, which choice of the sample points for the Riemann sum will give the best approximation of $\int_{a}^{b} f(x) d x$?
A. Right endpoints of all subintervals
B. Left endpoints
C. Midpoints
D. It depends on whether a and/or b are positive or negative
E. It depends on whether $f(x)$ is positive or negative
4. If a Riemann sum with 6 subintervals of equal length is used to estimate $\int_{-3}^{9} \sqrt[4]{x} d x$, what is Δx ?
A. 0
B. 1
C. 2
D. 6
E. 12
5. Which of the following properties is correct?
A. $\int f(x) g(x) d x=\left(\int f(x) d x\right)\left(\int g(x) d x\right)$
B. $\int \frac{1}{f(x)} d x=\frac{1}{\int f(x) d x}$
C. $\int_{-a}^{0} f(-x) d x=\int_{0}^{a} f(x) d x$
D. $\int_{a}^{b} f(x) d x=\int_{b}^{a} f(x) d x$
E. $\int_{0}^{a} f(x) d x=-\int_{-a}^{0} f(x) d x$
6. Find the area of the region bounded by $y=0, x=2, x=5, y=x+1$, and $y=7-x / 2$.
A. 11.25
B. 11.5
C. 12.25
D. 12.75
E. none of the above

Regular problems: show all your work

7. Use the definition of the integral to evaluate $\int_{0}^{3} 2 x d x$.
8. Evaluate the inegral $\int_{0}^{3} 2 x d x$ (notice that this is the same integral as in the previous problem) in two more ways (and check that all three of your anwers are the same):
(a) interpreting it in terms of areas
(b) using an antiderivative
9. Evaluate $\int x^{2} \sin \left(x^{3}\right) d x$
10. Evaluate $\int_{-2}^{0} \sqrt{4-x^{2}} d x$
11. A car with initial speed $60 \mathrm{ft} / \mathrm{sec}$ (approximately $40 \mathrm{mi} / \mathrm{h}$) is slowing down at a constant decelaration and comes to a complete stop in 10 seconds. Find the distance traveled by the car while slowing down.
12. If $\int_{0}^{5} f(x)=6 d x$ and $\int_{0}^{10} 2 f(x) d x=18$, find $\int_{5}^{10}(f(x)+1) d x$.
