MATH 75B

Final Exam - Version 1

December 16, 2009

Name:

- Please turn off your cell phones and any other electronic devices.
- Write your name both on the exam and on the scantron form. Also please write the exam version in the field "TEST NO."
- No notes, books, or calculators are allowed.
- You may write on the exam. If you need additional scratch paper, please raise your hand.
- You have to turn in your scantron form, exam, and all your scratch paper.
- Show your photo ID to the instructor when you turn in your papers.

1. Evaluate $\int \frac{e^{x}}{1+e^{2 x}} d x$.
(a) $\arctan \left(e^{x}\right)+C$ correct
(b) $\frac{1}{e^{x+\frac{e^{3 x}}{3}}}+C$
(c) $\frac{e^{x}}{x+e^{2 x}}+C$
(d) $\frac{e^{x}}{1+e^{x^{2}}}+C$
(e) none of the above
2. Evaluate $\int_{0}^{1} \frac{d x}{\cos ^{2} x+\sin ^{2} x}$.
(a) 0
(b) 1 correct
(c) $\frac{\pi}{2}$
(d) π
(e) 2π
3. Bismuth-210 has a half-life of 5 days. A sample originally has a mass of 800 mg . Find the mass remaining after 30 days.
(a) $\frac{e^{80 / 3}}{5}$
(b) 25
(c) $\frac{400}{3}$
(d) $\frac{800}{e^{6}}$
(e) none of the above correct
4. On the interval $(-1,1)$ the function $f(x)=\frac{1}{2} e^{x}-x-1$ is
(a) constant
(b) positive
(c) increasing
(d) concave upward correct
(e) even
5. Find the inflection points of $f(x)=3 x^{5}+10 x^{4}+10 x^{3}+3 x+10$.
(a) $x=-1$
(b) $x=0$ correct
(c) $x=1$
(d) $x=-1$ and $x=0$
(e) $x=0$ and $x=1$
6. Evaluate $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x^{2}}$.
(a) 0
(b) 1
(c) e
(d) π
(e) ∞ correct
7. Let a rectangle be inscirbed in the region between the x-axis and the parabola $y=2-x^{2}$ so that its base lies on the x-axis and its upper vertices lie on the parabola. Find the largest possible area of such a rectangle.
(a) 2
(b) $2 \sqrt{2}$
(c) $\frac{3 \sqrt{3}}{2 \sqrt{2}}$
(d) $\frac{8 \sqrt{2}}{3 \sqrt{3}}$ correct
(e) none of the above
8. Which of the following would be the best approximation x_{1} if we want to use Newton's method to estimate the root of $\cos x=2 x$?
(a) $x=-\pi$
(b) $x=\frac{1}{2}$ correct
(c) $x=\frac{\pi}{2}$
(d) $x=2$
(e) $x=\frac{3 \pi}{2}$
9. Suppose $f^{\prime}(x)=(x-1)^{2}(x-3)^{5}(x-6)^{7}$. On what interval(s) is $f(x)$ decreasing?
(a) $(-\infty, 1)$
(b) $(1,3)$
(c) $(3,6)$ correct
(d) $(-\infty, 1) \cup(3,6)$
(e) $(1,3) \cup(6,+\infty)$
10. At which point(s) on the curve $y=1+40 x^{3}-3 x^{5}$ does the tangent line have the largest slope?
(a) $(0,1)$
(b) $(\sqrt{2}, 1+68 \sqrt{2})$ and $(-\sqrt{2}, 1-68 \sqrt{2})$ correct
(c) $(1,38)$ and $(-1,-36)$
(d) $(2,225)$ and $(-2,-223)$
(e) none of the above
11. Find the absolute maximum value of $f(x)=x e^{-x}$ on the interval $[-10,10]$.
(a) $-\frac{10}{e^{10}}$
(b) $10 e^{-10}$
(c) $10 e^{10}$
(d) 10
(e) none of the above correct
12. Find an equation of the tangent line to the curve given by $x^{2}+2 x y-y^{2}+x=2$ at the point (1,2).
(a) $y=\frac{7}{2} x-\frac{3}{2}$ correct
(b) $y=\frac{5}{2} x-\frac{1}{2}$
(c) $y=-\frac{3}{2} x-\frac{7}{2}$
(d) $y=-\frac{1}{2} x+\frac{5}{2}$
(e) none of the above
13. A spotlight on the ground shines on a wall 12 m away. If a man 2 m tall walks from the spotlight toward the building at a speed of $1.6 \mathrm{~m} / \mathrm{s}$, how fast is the length of his shadow on the building decreasing when he is 4 m from the building?
(a) $0.4 \mathrm{~m} / \mathrm{s}$
(b) $0.6 \mathrm{~m} / \mathrm{s}$ correct
(c) $0.8 \mathrm{~m} / \mathrm{s}$
(d) $1.2 \mathrm{~m} / \mathrm{s}$
(e) none of the above
14. Find the horizontal asymptotes of $f(x)=\arctan x$, if it has any.
(a) $y=\frac{\pi}{2}$
(b) $y=0$
(c) $y=\frac{\pi}{2}$ and $y=-\frac{\pi}{2}$ correct
(d) $y=\pi$ and $y=-\pi$
(e) no horizontal asymptotes
15. How many critical numbers does $f(x)=e^{x} \sin x$ have on the interval $[-5,5]$?
(a) 0
(b) 1
(c) 2
(d) 3 correct
(e) infinitely many
16. Evaluate $\arcsin \left(\sin \left(\frac{29}{20} \pi\right)\right)$.
(a) $-\frac{11}{20} \pi$
(b) $-\frac{9}{20} \pi$ correct
(c) $-\frac{1}{10} \pi$
(d) $\frac{1}{20} \pi$
(e) $\frac{9}{10} \pi$
17. A car was traveling at $50 \mathrm{ft} / \mathrm{s}$ when the brakes are fully applied, producing a constant deceleration. If the car traveled 250 ft before coming to a stop, how long did it take it to stop?
(a) 5 s
(b) 7.5 s
(c) 8.75 s
(d) 10 s correct
(e) 12.5 s
18. Evaluate $\lim _{x \rightarrow 5} \frac{\sqrt{x+4}-3}{x-5}$
(a) 0
(b) 1
(c) $\frac{1}{3}$
(d) $\frac{1}{6}$ correct
(e) ∞
19. Find the number c that satisfies the conclusion of the Mean Value Theorem for the function $f(x)=\frac{x}{x+2}$ and the interval $[1,4]$.
(a) $\frac{5}{9}$
(b) -2
(c) $\frac{1}{2}$
(d) $\frac{5}{3}$
(e) none of the above correct
20. Find the vertical asymptotes of the graph of $f(x)=\frac{x^{2}+x}{x^{2}+3 x+2}$.
(a) $x=1$
(b) $x=-1$
(c) $x=-2$ correct
(d) $x=-1$ and $x=-2$
(e) $x=1$ and $x=-1$
21. Estimate the area of the region bounded by $y=\frac{12}{x}, x=1, x=9$, and $y=0$, using 4 approximating rectangles and midpoints.
(a) 20
(b) 25 correct
(c) 30
(d) 36
(e) none of the above
22. Find the domain of the function $f(x)=\sqrt{\frac{1-x}{1+x}}$.
(a) $(1, \infty)$
(b) $[1, \infty)$
(c) $(-1,1]$ correct
(d) $(-\infty,-1)$
(e) $(-\infty,-1) \cup(-1, \infty)$.
23. Let $f(x)=\int_{1}^{x} \arcsin \left(\frac{\sqrt{t^{2}+1}}{2}\right) d t$, find $f^{\prime}(1)$.
(a) 0
(b) $\frac{1}{2}$
(c) $\frac{\pi}{2}$
(d) $\frac{\pi}{4}$ correct
(e) none of the above
24. A kite 100 ft above the ground moves horizontally at a speed of $8 \mathrm{ft} / \mathrm{s}$. At what rate is the angle between the string and the ground decreasing when 200 ft of string has been let out?
(a) $0.02 \mathrm{rad} / \mathrm{s}$ correct
(b) $0.04 \mathrm{rad} / \mathrm{s}$
(c) $0.06 \mathrm{rad} / \mathrm{s}$
(d) $0.08 \mathrm{rad} / \mathrm{s}$
(e) none of the above
25. A particle moves along a straight line with equation of motion $s(t)=\sqrt{t+1}$. Find its average velocity over the time interval $[0,8]$.
(a) $\frac{1}{4}$ correct
(b) $\frac{1}{6}$
(c) $\frac{1}{2}$
(d) 0
(e) 2
