Practice test 1 - Solutions

Multiple choice questions: circle the correct answer

1. Find the exact value of $\arcsin(1)$.

A. 0

C. π

D. $\frac{3\pi}{2}$

 $\mathbf{E}. \ 2\pi$

2. Find the exact value of $\operatorname{arccos}\left(\frac{1}{2}\right)$.

A. 0

B. $\frac{\pi}{6}$

C. $\frac{\pi}{4}$

(D) $\frac{\pi}{3}$

E. $\frac{\pi}{2}$

3. Find the exact value of $\sin\left(\arctan\left(\frac{3}{4}\right)\right)$.

A. $-\frac{3}{5}$

B. $-\frac{3}{4}$

(C) $\frac{3}{5}$

D. $\frac{3}{4}$

E. $\frac{4}{5}$

4. Suppose 100 dollars are invested at an annual interest rate of 10% while interest is compounded monthly. What is the ammount after 10 years?

A. $100 \left(1 + \frac{1}{120}\right)^{10}$ **D.** $120 \left(1 + \frac{10}{12}\right)^{100}$

(B) $100 \left(1 + \frac{1}{120}\right)^{120}$ E. $120 \left(1 + \frac{1}{120}\right)^{100}$

C. $100 \left(1 + \frac{10}{12}\right)^{10}$

5. The graph of any exponential function $f(x) = a^x$ (where $a > 0, a \neq 1$) passes through which of the following points:

A. (0,0)

B. (1, 0)

(c) (0,1)

D. (1,1)

E. none of the above

6. If $m(t) = m_0 e^{kt}$ is the mass remaining from an initial mass m_0 of a radioactive substance after time t, find the half-life of the substance.

A. $m_0/2$

B. $-t/\ln(2)$

C. k/2

(D) $-\ln(2)/k$ E. $m_0 \ln(2)/k$

Regular problems: show all your work

7. (a) $3x^2y^3 + 3x^3y^2y' - 3y^3 - 9xy^2y' + 4y' = 0$

 $(3x^3y^2 - 9xy^2 + 4)y' = 3y^3 - 3x^2y^3$ $y' = \frac{3y^3 - 3x^2y^3}{3x^3y^2 - 9xy^2 + 4}$

(b) $2^3 - 3 \cdot 2 + 4 = 6$

(c) $y'(2) = \frac{3 - 3 \cdot 2^2}{3 \cdot 2^3 - 9 \cdot 2 + 4} = -\frac{9}{10}$

8. $\tan y + x \sec^2 y \cdot y' + y + xy' + 3y' = 0$ $(x \sec^2 y + x + 3)y' = -\tan y - y$

If x = 0 and y = 0, then 3y'(0) = 0, so the slope of the tangent line is 0.

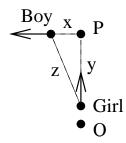
9. (a) Let x be the distance between the boy and the point P, let y be the distance between the girl and P, and let z be the distance between the boy and the girl.

Then $x^2 + y^2 = z^2$ where x, y, and z are functions of time.

Differentiating this equation with respect to t gives

$$2xx' + 2yy' = 2zz'$$

$$xx' + yy' = zz'$$



45 minutes after the girl started walking (and thus 50 minutes after the boy started walking), $x = 6 \cdot \frac{50}{60} = 5$, $y = 15 - 4 \cdot 4560 = 15 - 3 = 12$, and $z = \sqrt{5^2 + 12^2} = 13$. x' is the rate of change of x, i.e. the speed of the boy, so x' = 6, and y' is the rate of change of y, i.e. negative the speed of the girl since y is decreasing, so y' = -4. Therefore

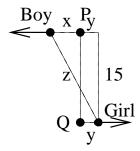
$$5 \cdot 6 + 12 \cdot (-4) = 13z$$

Answer: $-\frac{18}{13}$, decreasing.

(b) Let x be the distance between the boy and the point P, let y be the distance between the girl and her starting point Q, and let z be the distance between the boy and the girl.

Then $(x + y)^2 + 15^2 = z^2$ (see the figure) Differentiating this equation with respect to t gives 2(x + y)(x' + y') = 2zz'

$$(x+y)(x'+y') = zz'$$



45 minutes after the girl started walking (and thus 50 minutes after the boy started walking), $x = 6 \cdot \frac{50}{60} = 5$, $y = 4 \cdot 4560 = 3$, so x + y = 8, and $z = \sqrt{8^2 + 15^2} = 17$. x' is the rate of change of x, i.e. the speed of the boy, so x' = 6, and y' is the rate of change of y, i.e. the speed of the girl, so y' = 4. Therefore

$$(5+3)(6+4) = 17z'$$

Answer: $\frac{80}{17}$, increasing.

10.
$$V(t) = \frac{4}{3}\pi(r(t))^3$$

 $V'(t) = 4\pi(r(t))^2 r'(t)$
If $r' = -1$ and $r = 3$, $V'(t) = 4\pi 3^2 \cdot 1 = 36\pi$

- Answer: 36π cm³/min.
- 11. Since initially there are 800 bacteria, $P(t) = 800e^{kt}$. At t = 3 we have: $2700 = 800e^{k \cdot 3}$ $(e^k)^3 = \frac{27}{8} e^k = \frac{3}{2}$. Then at t = 5: $P(5) = 800e^{k \cdot 5} = 800(e^k)^5 = 800\left(\frac{3}{2}\right)^5 = \frac{800 \cdot 3^5}{2^5} = 25 \cdot 343 = 6075$.

12. (a)
$$f'(x) = \frac{3}{\sqrt{1-9x^2}}$$

(b)
$$'g(x) = \tan^{-1}(1-x) + \frac{-x}{1+(1-x)^2}$$

(c)
$$h(x) = \frac{-\frac{\sqrt{1-x^2}}{\sqrt{1-x^2}} - \arccos(x) \frac{-2x}{2\sqrt{1-x^2}}}{1-x^2} = \frac{-1 + \frac{x \arccos(x)}{\sqrt{1-x^2}}}{1-x^2}$$