Math 75B

Maria Nogin

Practice test 1 - Solutions

Multiple choice questions: circle the correct answer

- 1. Find the exact value of $\arcsin(1)$.
 - A. 0 (B) $\frac{\pi}{2}$ C. π D. $\frac{3\pi}{2}$ E. 2π
- 2. Find the exact value of $\arccos\left(\frac{1}{2}\right)$. **A.** 0 **B.** $\frac{\pi}{6}$ **C.** $\frac{\pi}{4}$ **D.** $\frac{\pi}{3}$ **E.** $\frac{\pi}{2}$
- 3. Find the exact value of $\sin\left(\arctan\left(\frac{3}{4}\right)\right)$. **A.** $-\frac{3}{5}$ **B.** $-\frac{3}{4}$ **C.** $\frac{3}{5}$ **D.** $\frac{3}{4}$ **E.** $\frac{4}{5}$

4. Suppose 100 dollars are invested at an annual interest rate of 10% while interest is compounded monthly. What is the ammount after 10 years?

A. $100 \left(1 + \frac{1}{120}\right)^{10}$ B. $100 \left(1 + \frac{1}{120}\right)^{120}$ C. $100 \left(1 + \frac{10}{12}\right)^{10}$ D. $120 \left(1 + \frac{10}{12}\right)^{100}$ E. $120 \left(1 + \frac{1}{120}\right)^{100}$ C. $100 \left(1 + \frac{10}{12}\right)^{10}$

5. How many critical numbers does the function $y = x + \frac{1}{x}$ have?

A. 0 **B.** 1 **C.** 2 **D.** 3 **E.** infinitely many

6. Find the local maximum of $y = x + \frac{1}{x}$.

A. x = -2 **B.** x = -1 **C.** x = 0 **D.** x = 1 **E.** x = 2

Regular problems: show all your work

7. (a)
$$3x^{2}y^{3} + 3x^{3}y^{2}y' - 3y^{3} - 9xy^{2}y' + 4y' = 0$$
$$(3x^{3}y^{2} - 9xy^{2} + 4)y' = 3y^{3} - 3x^{2}y^{3}$$
$$y' = \frac{3y^{3} - 3x^{2}y^{3}}{3x^{3}y^{2} - 9xy^{2} + 4}$$
(b)
$$2^{3} - 3 \cdot 2 + 4 = 6$$
(c)
$$y'(2) = \frac{3 - 3 \cdot 2^{2}}{3 \cdot 2^{3} - 9 \cdot 2 + 4} = -\frac{9}{10}$$

- 8. $\tan y + x \sec^2 y \cdot y' + y + xy' + 3y' = 0$ $(x \sec^2 y + x + 3)y' = -\tan y - y$ If x = 0 and y = 0, then 3y'(0) = 0, so the slope of the tangent line is 0.
- 9. (a) Let x be the distance between the boy and the point P, let y be the distance between the girl and P, and let z be the distance between the boy and the girl. Then $x^2 + y^2 = z^2$ where x, y, and z are functions of time. Differentiating this equation with respect to t gives 2xx' + 2yy' = 2zz' xx' + yy' = zz'Boy x P

45 minutes after the girl started walking (and thus 50 minutes after the boy started walking), $x = 6 \cdot \frac{50}{60} = 5$, $y = 15 - 4 \cdot 4560 = 15 - 3 = 12$, and $z = \sqrt{5^2 + 12^2} = 13$. x' is the rate of change of x, i.e. the speed of the boy, so x' = 6, and y' is the rate of change of y, i.e. negative the speed of the girl since y is decreasing, so y' = -4. Therefore

$$5 \cdot 6 + 12 \cdot (-4) = 13z$$

Answer: $-\frac{18}{13}$, decreasing

(b) Let x be the distance between the boy and the point P, let y be the distance between the girl and her starting point Q, and let z be the distance between the boy and the girl.

Then
$$(x + y)^2 + 15^2 = z^2$$
 (see the figure)
Differentiating this equation with respect to t gives
 $2(x + y)(x' + y') = 2zz'$
 $(x + y)(x' + y') = zz'$
I5
Girl

45 minutes after the girl started walking (and thus 50 minutes after the boy started walking), $x = 6 \cdot \frac{50}{60} = 5$, $y = 4 \cdot 4560 = 3$, so x + y = 8, and $z = \sqrt{8^2 + 15^2} = 17$. x' is the rate of change of x, i.e. the speed of the boy, so x' = 6, and y' is the rate of change of y, i.e. the speed of the girl, so y' = 4. Therefore (5+3)(6+4) = 17z'Answer: $\frac{80}{17}$, increasing.

- 10. $V(t) = \frac{4}{3}\pi(r(t))^3$ $V'(t) = 4\pi(r(t))^2 r'(t)$ If r' = -1 and r = 3, $V'(t) = 4\pi 3^2 \cdot 1 = 36\pi$ Answer: 36π cm³/min.
- 11. Since initially there are 800 bacteria, $P(t) = 800e^{kt}$. At t = 3 we have: $2700 = 800e^{k\cdot 3}$ $(e^k)^3 = \frac{27}{8}e^k = \frac{3}{2}$. Then at t = 5: $P(5) = 800e^{k\cdot 5} = 800(e^k)^5 = 800\left(\frac{3}{2}\right)^5 = \frac{800\cdot 3^5}{2^5} = 25 \cdot 343 = 6075$.