Practice test 2 - Solutions

Multiple choice questions: circle the correct answer

1. If f(1) = 3 and $f'(x) \le 2$, which of the following must be true about f(4)?

- **A.** $f(4) \le 6$ **B.** $f(4) \le 9$ **C.** $f(4) \le 11$ **D.** $f(4) \ge 5$ **E.** $f(4) \ge 8$

(By the Mean Value Theorem, there is a point c such that $f'(c) = \frac{f(4) - f(1)}{4 - 1}$. Since $f'(x) \le 2$, we have $\frac{f(4) - f(1)}{4 - 1} \le 2$. Then $f(4) - f(1) \le 6$, so $f(4) \le f(1) + 6 = 9$.)

2. Use Newton's method to approximate the root of the equation $x^2 - 23 = 0$. Let $x_1 = 5$. Find x_2 .

A. 0

- (C) 4.8

(Let $f(x) = x^2 - 23$. Then f'(x) = 2x, and we have $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 5 - \frac{f(5)}{f'(5)} = 2x$ $5 - \frac{2}{10} = 4.8.$

3. Which of the following functions is an antiderivative of \sqrt{x} ?

A. $2\sqrt{x}$

B. $\frac{1}{2\sqrt{x}}$

C. $\frac{3}{2}x^{\frac{3}{2}}$

E. none of the above

(An antiderivative of $x^{1/2}$ is $\frac{x^{3/2}}{3/2} = \frac{2x^{3/2}}{3} = \frac{2x\sqrt{x}}{3}$.)

Regular problems: show all your work

- 4. $f'(x) = 3x^2 6x = 0$ gives x = 0 and x = 2. Since f'(-1) > 0, f'(1) < 0, and f'(3) > 0, the point x = 0 is a local minimum and the point x = 2 is a local maximum.
- 5. Use the closed interval method:
 - 1. Find the critical numbers: $f'(x) = 4x^3 + 12x^2 = 0$ gives x = 0 and x = -3. However, -3 is not in our interval. Only 0 is.
 - 2. Find the value of the function at the critical number(s): f(0) = 5.
 - 3. Find the value of the function at the endpoints of the interval: f(-2) = -11. The other endpoint is 0, but we already found the value at 0.
 - 4. The largest of the above values, i.e. 5, is the absolute maximum value of the function on the given interval, and the smallest of the above values, i.e. -11, is the absolute minimum value.
- 6. Use the closed interval method:
 - 1. Find the critical numbers: $f'(x) = \cos x$. The only root on the given interval is $x=\frac{\pi}{2}$.

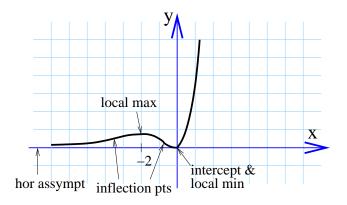
- 2. Find the value of the function at the critical number(s): $f\left(\frac{\pi}{2}\right) = 1$.
- 3. Find the value of the function at the endpoints of the interval: f(0) = 0, $f(\frac{5\pi}{4}) =$
- $-\frac{1}{\sqrt{2}}$.
 4. The largest of the above values, i.e. 1, is the absolute maximum value of the function on the given interval, and the smallest of the above values, i.e. $-\frac{1}{\sqrt{2}}$, is the absolute minimum value.
- 7. Let $f(x) = x^7 + 3x^3 + x$. Since the funtion f(x) is continuous, f(0) < 4 and f(1) > 4, by the Intermediate Value Theorem the equation f(x) = 4 has at least one real root. However, since $f'(x) = 7x^6 + 9x^2 + 1 > 0$, by Rolle's Theorem this equation cannot have more than one real root. Thus it has exactly one real root.
- 8. $f(x) = x^2 e^x$.
 - (a) Domain: $(-\infty, +\infty)$
 - (b) f(0) = 0; the only solution of $x^2e^x = 0$ is x = 0, so the only intercept is (0,0).
 - (c) There are no vertical asymptotes since the function is continuous everywhere.

Horizontal asymptotes:
$$\lim_{x \to +\infty} x^2 e^x = +\infty$$
;
$$\lim_{x \to -\infty} x^2 e^x = \lim_{x \to -\infty} \frac{x^2}{e^{-x}} = \lim_{x \to -\infty} \frac{2x}{-e^{-x}} = \lim_{x \to -\infty} \frac{2}{e^{-x}} = \lim_{x \to -\infty} 2e^x = 0, \text{ so } y = 0 \text{ is a horizontal asymptote.}$$

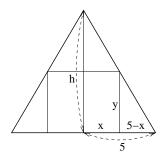
- (d) Critical numbers: $f'(x) = 2xe^x + x^2e^x = 0$ $xe^x(2+x) = 0$ x = 0, x = -2.
- (e) Since f'(-3) > 0, f'(-1) < 0, and f'(1) > 0, the function is increasing on $(-\infty, -2)$, decreasing on (-2, 0), and increasing on $(0, +\infty)$.
- (f) x = -2 is a local maximum and x = 0 is a local minimum.
- (g) $f''(x) = 2e^x + 2xe^x + 2xe^x + x^2e^x = e^x(2+4x+x^2)$ $e^x(2+4x+x^2) = 0$ $2 + 4x + x^2 = 0$ $x=-2\pm\sqrt{2}$

Since f''(-4) > 0, f''(-2) < 0, and f''(0) > 0, the function is concave upward on $(-\infty, -2 - \sqrt{2})$, concave downward on $(-2 - \sqrt{2}, -2 + \sqrt{2})$, and concave upward on $(-2 + \sqrt{2}, +\infty)$.

- (h) Inflection points: $x = -2 \pm \sqrt{2}$
- (i) Graph of f(x):



9. We want to find x and y such that the area of the rectangle, i.e. 2xy, is a maximum.



Use similar triangles to find a relationship between x and y, e.g.

$$\frac{5-x}{5} = \frac{y}{h}$$
 where $h = 5 \tan 60^{\circ} = 5\sqrt{3}$, so we have

$$\frac{5-x}{5} = \frac{y}{5\sqrt{3}}$$

Multiplying both sides by $5\sqrt{3}$ gives $\sqrt{3}(5-x)=y$.

Now we can express the area as a function of one variable x:

 $A(x) = 2x\sqrt{3}(5-x) = 10\sqrt{3}x - 2\sqrt{3}x^2$. To find a maximum, we have to differentiate

A(x) and set the derivative equal to 0:

$$A'(x) = 10\sqrt{3} - 4\sqrt{3}x = 0$$

$$10\sqrt{3} = 4\sqrt{3}x$$

$$x = 2.5$$

Since A'(x) changes from positive to negative at 2.5, this is a local maximum.

 $y = \sqrt{3}(5-x) = 2.5\sqrt{3}$, thus the width of the rectangle is $2x = 2 \cdot 2.5 = 5$, and the height is $y = 2.5\sqrt{3}$.

10.
$$f(x) = x - 2x^4 - 2\cos x - \sin x + c$$

$$f(0) = -2 + c = 5$$

$$so c = 7$$

$$f(x) = x - 2x^4 - 2\cos x - \sin x + 7$$