Practice test 1

The actual exam will consist of 6 multiple choice questions and 6 regular problems.
You will have 1 hour to complete the exam.

Multiple choice questions: circle the correct answer

1. The function $f(x)=\sin (x)+x^{2}$ is
A. even
B. odd
C. periodic with period 2π
D. discontinuous at 0
E. None of the above
2. If we shift the graph of $y=\sin (x) 2$ units to the left, then the equation of the new graph is
A. $y=\sin (x)+2$
B. $y=\sin (x)-2$
C. $y=\sin (x+2)$
D. $y=\sin (x-2)$
E. $y=\sin (x / 2)$
3. The domain of the function $f(x)=\sqrt{\frac{1}{9-x^{2}}}+\sqrt{x-1}$ is the set of all real numbers x for which
A. $x<-3$ or $x>3$
B. $x<3$
C. $x \geq 1$
D. $1 \leq x<3$
E. $1<x<3$
4. $\lim _{x \rightarrow-1^{-}} \frac{|x+1|}{x+1}=$
A. 1
B. -1
C. 0
D. $-\infty$
E. Does not exist
5. The function $f(x)=\left\{\begin{array}{ll}-x-1 & \text { if } x<-1 \\ 0 & \text { if }-1 \leq x \leq 1 \\ x & \text { if } x>1\end{array} \quad\right.$ is
A. continuous everywhere
B. continuous at 1 but discontinuous at -1
C. continuous at -1 but discontinuous at 1
D. continuous at all points except for 1 and -1
E. discontinuous everywhere
6. Find the equation of the line tangent to the curve $y=x^{2}+4 x+4$ at $(1,9)$.
A. $y=9 x$
B. $y=6 x-15$
C. $y=6 x+3$
D. $y=2 x+1$
E. None of the above
7. If $f(3)=2, f^{\prime}(3)=4, g(3)=5$, and $g^{\prime}(3)=6$, then the derivative of $\frac{f(x)}{g(x)}$ at $x=3$ is $\left(\frac{f}{g}\right)^{\prime}(3)=$
A. 0.32
B. $2 / 3$
C. $-8 / 25$
D. 0
E. Undefined

Regular problems: show all your work

8. Sketch the graphs of:
(a) $(x-3)^{2}$
(b) $3 \cos x+2$
(c) $-\sin \left(x-\frac{\pi}{2}\right)$
(d) e^{-x-1}
9. Find a formula for the function whose graph is obtained from the graph of $f(x)=e^{x}-1$ by
(a) Reflecting about the y-axis.
(b) Vertically compressing by a factor of 5 and then shifting 3 units to the left.
(c) Reflecting about the x-axis and then shifting 2 units down.
10. Let $f(x)=2-x, \quad g(x)=\frac{1}{x}, \quad h(x)=\sqrt{x+1}$. Find the following functions and state their domains:
(a) $g \circ f$
(b) $f \circ h$
(c) $g \circ h$
11. Evaluate the limits:
(a) $\lim _{x \rightarrow 5}(7 x-25)$
(b) $\lim _{x \rightarrow-1} \frac{x^{3}+x^{2}}{x^{2}+3 x+2}$
(c) $\lim _{x \rightarrow 0} \frac{3-\sqrt{9+x}}{x}$
(d) $\lim _{x \rightarrow 2^{+}} \frac{x^{3}-2}{x^{2}-x-2}$
(e) $\lim _{x \rightarrow 2^{-}} \frac{x^{3}-2}{x^{2}-x-2}$
(f) $\lim _{x \rightarrow 2} \frac{x^{3}-2}{x^{2}-x-2}$
(g) $\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{1}{x}\right)$
12. Find c such that the function $f(x)=\left\{\begin{array}{rll}c x & \text { if } & x \geq 2 \\ 5-x & \text { if } & x<2\end{array}\right.$ s continuous everywhere.
13. Show that the equation $x^{5}-4 x+2=0$ has at least one solution in the interval $(1,2)$.
14. Find the vertical asymptotes of $f(x)=\frac{(x+2)(3 x-4)}{(x-5)(x+7)}$.
15. Differentiate the following functions:
(a) $f(x)=7 x-3$
(b) $p(s)=s^{5}-2 s^{4}+3 s^{3}-4 s^{2}+5 s-6$
(c) $f(t)=\frac{3 t^{2}-5 t+1}{\sqrt{t}}$
(d) $g(x)=x^{2}-\frac{x^{3}}{\sqrt[4]{x}}+\frac{3}{x}$
(e) $q(y)=\frac{y^{2}+y+1}{y+1}$
