Math 75

Practice test 1

The actual exam will consist of 6 multiple choice questions and 6 regular problems. You will have 1 hour to complete the exam.

Multiple choice questions: circle the correct answer

1. The function $f(x) = \sin(x) + x^2$ is **B.** odd A. even **C.** periodic with period 2π **D.** discontinuous at 0 **E.** None of the above

2. If we shift the graph of $y = \sin(x)$ 2 units to the left, then the equation of the new graph is **A.** $y = \sin(x) + 2$ **B.** $y = \sin(x) - 2$ **C.** $y = \sin(x + 2)$ **D.** $y = \sin(x - 2)$ **E.** $y = \sin(x/2)$

3. The domain of the function $f(x) = \sqrt{\frac{1}{9-x^2}} + \sqrt{x-1}$ is the set of all real numbers x for which

A.
$$x < -3$$
 or $x > 3$ **B.** $x < 3$ **C.** $x \ge 1$ **D.** $1 \le x < 3$ **E.** $1 < x < 3$

- $\mathbf{E} = x < 3 \qquad \mathbf{E} \cdot 1 < x < 3$ $\mathbf{B} \cdot -1 \qquad \mathbf{C} \cdot 0 \qquad \mathbf{D} \cdot -\infty \qquad \mathbf{E} \cdot \mathbf{D} \text{oes not exist}$ 5. The function $f(x) = \begin{cases} -x 1 & \text{if } x < -1 \\ 0 & \text{if } -1 \le x \le 1 \\ x & \text{if } x > 1 \end{cases}$ $\mathbf{A} \cdot \text{continuous everywhere}$ $\mathbf{B} \cdot \text{continuous at 1 but discontinuous of } \mathbf{C} \cdot \mathbf{C} \cdot \mathbf{C} \cdot \mathbf{C} \cdot \mathbf{C} \cdot \mathbf{C} = \mathbf{C} \cdot \mathbf{C$

- **D.** continuous at all points except for 1 and -1
- **E.** discontinuous everywhere
- 6. Find the equation of the line tangent to the curve $y = x^2 + 4x + 4$ at (1, 9). **B.** y = 6x - 15 **C.** y = 6x + 3 **D.** y = 2x + 1**A.** y = 9x**E.** None of the above

7. If f(3) = 2, f'(3) = 4, g(3) = 5, and g'(3) = 6, then the derivative of $\frac{f(x)}{g(x)}$ at x = 3 is $\left(\frac{f}{g}\right)$ (3) = **B.** 2/3 **C.** -8/25 **D.** 0 **E.** Undefined

Regular problems: show all your work

- 8. Sketch the graphs of:
 - (a) $(x-3)^2$
 - (b) $3\cos x + 2$
 - (c) $-\sin\left(x-\frac{\pi}{2}\right)$
 - (d) e^{-x-1}
- 9. Find a formula for the function whose graph is obtained from the graph of $f(x) = e^x 1$ by
 - (a) Reflecting about the *y*-axis.
 - (b) Vertically compressing by a factor of 5 and then shifting 3 units to the left.
 - (c) Reflecting about the x-axis and then shifting 2 units down.

10. Let f(x) = 2 - x, $g(x) = \frac{1}{x}$, $h(x) = \sqrt{x+1}$. Find the following functions and state their domains:

- (a) $g \circ f$
- (b) $f \circ h$
- (c) $g \circ h$

11. Evaluate the limits:

(a) $\lim_{x \to 5} (7x - 25)$ (b) $\lim_{x \to -1} \frac{x^3 + x^2}{x^2 + 3x + 2}$ (c) $\lim_{x \to 0} \frac{3 - \sqrt{9 + x}}{x}$ (d) $\lim_{x \to 2^+} \frac{x^3 - 2}{x^2 - x - 2}$ (e) $\lim_{x \to 2^-} \frac{x^3 - 2}{x^2 - x - 2}$ (f) $\lim_{x \to 2} \frac{x^3 - 2}{x^2 - x - 2}$ (g) $\lim_{x \to 0} x^4 \cos\left(\frac{1}{x}\right)$

12. Find c such that the function $f(x) = \begin{cases} cx & \text{if } x \ge 2\\ 5-x & \text{if } x < 2 \end{cases}$ s continuous everywhere.

- 13. Show that the equation $x^5 4x + 2 = 0$ has at least one solution in the interval (1, 2).
- 14. Find the vertical asymptotes of $f(x) = \frac{(x+2)(3x-4)}{(x-5)(x+7)}$.
- 15. Differentiate the following functions:

(a)
$$f(x) = 7x - 3$$

(b) $p(s) = s^5 - 2s^4 + 3s^3 - 4s^2 + 5s - 6$
(c) $f(t) = \frac{3t^2 - 5t + 1}{\sqrt{t}}$
(d) $g(x) = x^2 - \frac{x^3}{\sqrt[4]{x}} + \frac{3}{x}$
(e) $q(y) = \frac{y^2 + y + 1}{y + 1}$