Practice test 1 - Answers

The actual exam will consist of 6 multiple choice questions and 6 regular problems.
You will have 1 hour to complete the exam.

Multiple choice questions: circle the correct answer

1. The function $f(x)=\sin (x)+x^{2}$ is
A. even
B. odd
C. periodic with period 2π
D. discontinuous at 0
E. None of the above
2. If we shift the graph of $y=\sin (x) 2$ units to the left, then the equation of the new graph is
A. $y=\sin (x)+2$
B. $y=\sin (x)-2$
C. $y=\sin (x+2)$
D. $y=\sin (x-2)$
E. $y=\sin (x / 2)$
3. The domain of the function $f(x)=\sqrt{\frac{1}{9-x^{2}}}+\sqrt{x-1}$ is the set of all real numbers x for which
A. $x<-3$ or $x>3$
B. $x<3$
C. $x \geq 1$
D. $1 \leq x<3$
E. $1<x<3$
4. $\lim _{x \rightarrow-1^{-}} \frac{|x+1|}{x+1}=$
A. 1
(B. -1
C. 0
D. $-\infty$
E. Does not exist
5. The function $f(x)=\left\{\begin{array}{ll}-x-1 & \text { if } x<-1 \\ 0 & \text { if }-1 \leq x \leq 1 \\ x & \text { if } x>1\end{array} \quad\right.$ is
A. continuous everywhere
B. continuous at 1 but discontinuous at -1
C. continuous at -1 but discontinuous at 1
D. continuous at all points except for 1 and -1
E. discontinuous everywhere
6. Find the equation of the line tangent to the curve $y=x^{2}+4 x+4$ at $(1,9)$.
A. $y=9 x$
B. $y=6 x-15$
C. $y=6 x+3$
D. $y=2 x+1$
E. None of the above
7. If $f(3)=2, f^{\prime}(3)=4, g(3)=5$, and $g^{\prime}(3)=6$, then the derivative of $\frac{f(x)}{g(x)}$ at $x=3$ is $\left(\frac{f}{g}\right)^{\prime}(3)=$
A. 0.32
B. $2 / 3$
C. $-8 / 25$
D. 0
E. Undefined

Regular problems: show all your work

8. Sketch the graphs of:
(a) $(x-3)^{2}$: shift the graph of $x^{2} 3$ units to the right

(b) $3 \cos x+2$: stretch the graph of $\cos x$ by a factor of 3 vertically and then shift 2 units upward

(c) $-\sin \left(x-\frac{\pi}{2}\right)$: shift the graph of $\sin x \frac{\pi}{2}$ units to the right and then reflect about the x-axis

(d) e^{-x-1} : shift the graph of $e^{x} 1$ unit to the right and then reflect about the y-axis

9. Find a formula for the function whose graph is obtained from the graph of $f(x)=e^{x}-1$ by
(a) Reflecting about the y-axis. $g(x)=e^{-x}-1$
(b) Vertically compressing by a factor of 5 and then shifting 3 units to the left.
$g(x)=\frac{e^{x+3}-1}{5}$
(c) Reflecting about the x-axis and then shifting 2 units down.
$g(x)=-\left(e^{x}-1\right)-2=-e^{x}-1$
10. Let $f(x)=2-x, \quad g(x)=\frac{1}{x}, \quad h(x)=\sqrt{x+1}$. Find the following functions and state their domains:
(a) $g \circ f=g(2-x)=\frac{1}{2-x}$, domain: $2-x \neq 0$, so $x \neq 2$ or $(-\infty, 2) \cup(2,+\infty)$.
(b) $f \circ h=f(\sqrt{x+1})=2-\sqrt{x+1}$, domain: $x+1 \geq 0$, so $x \geq-1$ or $[-1,+\infty)$.
(c) $g \circ h=g(\sqrt{x+1})=\frac{1}{\sqrt{x+1}}$, domain: $x+1>0$, so $x>-1$ or $(-1,+\infty)$.
11. Evaluate the limits:
(a) $\lim _{x \rightarrow 5}(7 x-25)=7 \cdot 5-25=10$
(b) $\lim _{x \rightarrow-1} \frac{x^{3}+x^{2}}{x^{2}+3 x+2}=\lim _{x \rightarrow-1} \frac{x^{2}(x+1)}{(x+1)(x+2)}=\lim _{x \rightarrow-1} \frac{x^{2}}{x+2}=1$
(c) $\lim _{x \rightarrow 0} \frac{3-\sqrt{9+x}}{x}=\lim _{x \rightarrow 0} \frac{(3-\sqrt{9+x})(3+\sqrt{9+x})}{x(3+\sqrt{9+x})}=\lim _{x \rightarrow 0} \frac{3^{2}-(\sqrt{9+x})^{2}}{x(3+\sqrt{9+x})}=$
$=\lim _{x \rightarrow 0} \frac{9-(9+x)}{x(3+\sqrt{9+x})}=\lim _{x \rightarrow 0} \frac{-x}{x(3+\sqrt{9+x})}=\lim _{x \rightarrow 0} \frac{-1}{3+\sqrt{9+x}}=-\frac{1}{6}$
(d) $\lim _{x \rightarrow 2^{+}} \frac{x^{3}-2}{x^{2}-x-2}=\lim _{x \rightarrow 2^{+}} \frac{x^{3}-2}{(x-2)(x+1)}\left[\frac{\text { pos. }}{(\text { small pos.)(pos.) })}\right]=+\infty$
(e) $\lim _{x \rightarrow 2^{-}} \frac{x^{3}-2}{x^{2}-x-2}=\lim _{x \rightarrow 2^{+}} \frac{x^{3}-2}{(x-2)(x+1)}\left[\frac{\text { pos. }}{(\text { small neg.)(pos.) }}\right]=-\infty$
(f) $\lim _{x \rightarrow 2} \frac{x^{3}-2}{x^{2}-x-2}$ DNE because the limits in (d) and (e) are not equal
(g) $\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{1}{x}\right)=0$ by the squeeze theorem since $-x^{4} \leq x^{4} \cos \left(\frac{1}{x}\right) \leq x^{4}$ and $\lim _{x \rightarrow 0}\left(-x^{4}\right)=\lim _{x \rightarrow 0}\left(x^{4}\right)=0$.
12. Find c such that the function $f(x)=\left\{\begin{array}{rll}c x & \text { if } & x \geq 2 \\ 5-x & \text { if } & x<2\end{array}\right.$ is continuous everywhere.

Since linear functions are continuous everywhere, $f(x)$ is continuous at all poits except possibly at 2 . It is continuous at 2 if and only if the functions $c x$ and $5-x$ agree at 2 (that is, they have the same value at 2. The graph of $f(x)$ then has no jump at 2.) So we set the values of $c x$ and $5-x$ at 2 equal:
$c \cdot 2=5-2$
$2 c=3$
$c=\frac{3}{2}$
13. Show that the equation $x^{5}-4 x+2=0$ has at least one solution in the interval $(1,2)$.

Let $f(x)=x^{5}-4 x+2$. Then $f(1)=-1<0$ and $f(2)=26>0$. By the intermediate value theorem, there is a point c between 1 and 2 such that $f(c)=0$.
14. Find the vertical asymptotes of $f(x)=\frac{(x+2)(3 x-4)}{(x-5)(x+7)}$.

Since rational functions are continuous in their domains, $f(x)$ can have vertical asymptotes only at 5 and -7 (where it is undefined). Check the limits of $f(x)$ as x approaches 5 and -7 :
$\lim _{x \rightarrow 5^{+}} \frac{(x+2)(3 x-4)}{(x-5)(x+7)}\left[\frac{\text { (pos.)(pos.) }}{\text { (small pos.)(pos.) }}\right]=+\infty$
$\lim _{x \rightarrow-7^{+}} \frac{(x+2)(3 x-4)}{(x-5)(x+7)}\left[\frac{(\text { neg. })(\text { neg. })}{(\text { neg. })(\text { small pos.) })}\right]=-\infty$
Since the limits are infinite, $f(x)$ has vertical asymptotes $x=5$ and $x=-7$.
15. Differentiate the following functions:
(a) $f(x)=7 x-3$ $f^{\prime}(x)=7$
(b) $p(s)=s^{5}-2 s^{4}+3 s^{3}-4 s^{2}+5 s-6$
$p^{\prime}(s)=5 s^{4}-8 s^{3}+9 s^{2}-8 s+5$
(c) $f(t)=\frac{3 t^{2}-5 t+1}{\sqrt{t}}$
$f(t)=3 t^{1.5}-5 t^{0.5}+t^{-0.5}$
$f^{\prime}(t)=4.5 t^{0.5}-2.5 t^{-0.5}-0.5 t^{-1.5}=4.5 \sqrt{t}-\frac{2.5}{\sqrt{t}}-\frac{1}{2 t^{1.5}}$
(d) $g(x)=x^{2}-\frac{x^{3}}{\sqrt[4]{x}}+\frac{3}{x}$
$g(x)=x^{2}-x^{11 / 4}+3 x^{-1}$
$g^{\prime}(x)=2 x-\frac{11}{4} x^{7 / 4}-3 x^{-2}$
(e) $q(y)=\frac{y^{2}+y+1}{y+1}$
$q^{\prime}(y)=\frac{(2 y+1)(y+1)-\left(y^{2}+y+1\right)(1)}{(y+1)^{2}}=\frac{y^{2}+2 y}{(y+1)^{2}}$

