MATH 75
 Test 1 - Answers
 February 23, 2005

Multiple choice questions: circle the correct answer

1. Find the domain of the function $f(x)=\frac{1}{\sqrt{x-5}}$.
A. $x>0$
B. $x \geq 0$
C. $x \neq 0$
(D. $x>5$
E. $x \neq 5$
2. If $f(x)=x^{2}$ and $g(x)=\cos x$, find $(f \circ g)(x)$.
A. $x^{2} \cos x$
B. $2 x \cos x$
C. $\cos ^{2} x$
D. $\cos x^{2}$
E. None of these
3. Find the derivative of $x^{2}\left(x^{3}+x\right)$.
A. $2 x\left(3 x^{2}+1\right)$
B. $x^{5}+x^{3}$
C. $5 x^{4}+3 x^{2}$
D. $\frac{(x+h)^{2}\left((x+h)^{3}+(x+h)\right)-x^{2}\left(x^{3}+x\right)}{h}$
E. Does not exist
4. Evaluate the limit: $\lim _{x \rightarrow 4} \frac{x+4}{x-4}$
A. 0
B. ∞
C. $-\infty$
D. 8
E. Does not exist
5. If $f(1)=4, f^{\prime}(1)=3, g(1)=2$, and $g^{\prime}(1)=-1$, find the derivative of the quotient $\frac{f(x)}{g(x)}$ at $x=1$.
A. -3
B. -2.5
C. 0.5
D. 2.5
E. 5
6. If the curve $y=\sin x$ is stretched vertically by a factor of 2 then the equation of the new curve is
A. $y=\sin x+2$
B. $y=\sin (x+2)$
C. $y=2 \sin x$
D. $y=\sin (2 x)$
E. $2 y=\sin x$

Regular problems: show all your work

7. Sketch the graph of $f(x)=6-\frac{1}{2} x^{2}$.

8. Find an equation of the tangent line to $y=6-\frac{1}{2} x^{2}$ at $(2,4)$. Draw this tangent line on the above graph.
The slope of the tangent line is $y^{\prime}(2)$.
$y^{\prime}(x)=-\frac{1}{2} 2 x=-x$ $y^{\prime}(2)=-2$
Then an equation is $y-4=-2(x-2)$, or $y-4=-2 x+4$, or $y=-2 x+8$.
9. Show that the equation $x^{5}+x-5=0$ has a real root.

Let $f(x)=x^{5}+x-5$, then $f(0)=-5<0$ and $f(2)=29>0$, therefore by the intermediate value theorem there exists a number c between 0 and 2 such that $f(c)=0$, i.e. $f(x)$ has a real root.
10. Evaluate the limit: $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$. If the limit is infinite, determine whether it is $+\infty$ or $-\infty$.
$\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}=\lim _{x \rightarrow 4} \frac{(\sqrt{x}-2)(\sqrt{x}+2)}{(x-4)(\sqrt{x}+2)}=\lim _{x \rightarrow 4} \frac{(x-4)}{(x-4)(\sqrt{x}+2)}=\lim _{x \rightarrow 4} \frac{1}{\sqrt{x}+2}=\frac{1}{4}$
11. Let $f(x)=\left\{\begin{array}{lll}-x-1 & , & \text { if } \\ 3<0 \\ 3 & , & \text { if } \\ 3=0 \\ -2 x+5 & , & \text { if } \\ 0<x<1 \\ - & x \geq 1\end{array}\right.$.

Sketch the graph of $f(x)$.

Is $f(x)$ coninuous at 0 ? No because $\lim _{x \rightarrow 0} f(x) \neq f(0)$.
Is $f(x)$ continuous at 1 ? No because $\lim _{x \rightarrow 1} f(x)$ does not exist.
12. Find the derivative of the function $f(x)=x \sqrt{x}\left(5 x-\frac{3}{x^{4}}\right)$.

Simplify your answer.
First rewrite the function: $f(x)=x^{\frac{3}{2}}\left(5 x-3 x^{-4}\right)=5 x^{\frac{5}{2}}-3 x^{-\frac{5}{2}}$, then $f^{\prime}(x)=\frac{25}{2} x^{\frac{3}{2}}+\frac{15}{2} x^{-\frac{7}{2}}=\frac{25 x \sqrt{x}}{2}+\frac{15}{2 x^{3} \sqrt{x}}$

