MATH 75
 Test 2

April 4, 2005

Multiple choice questions: circle the correct answer

1. Find the derivative of $f(x)=\cos \left(2 x^{3}\right)$.
A. $\sin \left(2 x^{3}\right)$
B. $\sin \left(6 x^{2}\right)$
C. $-2 x^{3} \sin \left(2 x^{3}\right)$
D. $-6 x^{2} \sin \left(2 x^{3}\right)$
E. $-\sin (x)\left(6 x^{2}\right)$
2. Find the vertical asymptotes of $f(x)=\frac{x^{2}}{x^{2}-3 x}$.
A. $x=0$
(B. $x=3$
C. $x=0$ and $x=3$
D. $y=1$
E. $y=3$
3. Evaluate the limit: $\lim _{x \rightarrow-\infty} \frac{x^{2}+5}{x-3}$.
A. 0
B. 1
C. $-\frac{5}{3}$
D. ∞
(E.) $-\infty$
4. If $f(t)=\frac{8}{x}$, find $f^{\prime \prime \prime}(2)$.
(A.) -3
B. -2
C. 0
D. 1
E. 2
5. How many critical numbers does the function $y=x+\frac{1}{x}$ have?
A. 0
B. 1
C. 2
D. 3
E. infinitely many
6. Find the local maximum of $y=x+\frac{1}{x}$.
A. $x=-2$
(B. $x=-1$
C. $x=0$
D. $x=1$
E. $x=2$

Regular problems: show all your work

7. Evaluate the limit: $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+3 x-4}}{5 x-6}$.

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+3 x-4}}{5 x-6}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{x^{2}+3 x-4}}{x}}{5-\frac{6}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{x^{2}+3 x-4}}{\sqrt{x^{2}}}}{5-\frac{6}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{1+\frac{3}{x}-\frac{4}{x^{2}}}}{5-\frac{6}{x}}=\frac{1}{5}
$$

8. Find the linear approximation of the function $f(x)=x+\sin (x)$ at $a=0$.

The linear approximation is given by $L(x)=f(a)+f^{\prime}(a)(x-a)$.
Since $a=0$, we have $L(x)=f(0)+f^{\prime}(0)(x-0)$.
$f(0)=0$.
$f^{\prime}(x)=1+\cos (x)$.
$f^{\prime}(0)=1+1=2$.
So $L(x)=0+2(x-0)=2 x$.
9. Find the intervals of increase and decrease of the function $f(x)=x^{4}+4 x^{3}+5$.
$f^{\prime}(x)=4 x^{3}+12 x^{2}$.
The derivative is 0 when $4 x^{3}+12 x^{2}=0$, i.e. $4 x^{2}(x+3)=0$, i.e. at $x=0$ and $x=-3$. It is easy to check that $f^{\prime}(x)<0$ on $(-\infty,-3)$, and $f^{\prime}(x)>0$ on $(-3,0)$ and on ($0,+\infty$).
Therefore $f(x)$ is increasing on $(-3,+\infty)$ and decreasing on $(-\infty,-3)$.
10. Find the slope of the tangent line to the curve $x \tan y+x y+3 y=0$ at the point $(0,0)$.

Rewrite the equation as $x \tan (y(x))+x y(x)+3 y(x)=0$.
Differentiate with respect to x : $\tan (y(x))+x \sec ^{2}(y(x)) y^{\prime}(x)+y(x)+x y^{\prime}(x)+3 y^{\prime}(x)=0$.
Simplify: $\tan y+x \sec ^{2} y y^{\prime}+y+x y^{\prime}+3 y^{\prime}=0$.
If $x=0$ and $y=0$, we have $0+0 \cdot 1 \cdot y^{\prime}+0+0 \cdot y^{\prime}+3 y^{\prime}=0$, so $y^{\prime}=0$.
Thus the slope of the tangent line is 0 .
11. At midnight, ship A is 170 km north of ship B. Ship A is sailing south at $30 \mathrm{~km} / \mathrm{h}$ and ship B is sailing east at $20 \mathrm{~km} / \mathrm{h}$. How fast is the distance between the ships changing at 3:00 AM?

Let P be the starting point of ship B.
Let $x(t)=|A P|, y(t)=|P B|, z(t)=|A B|$ at time t.
We have $(x(t))^{2}+(y(t))^{2}=(z(t))^{2}$.
Differentiating with respect to t gives $2 x(t) x^{\prime}(t)+2 y(t) y^{\prime}(t)=2 z(t) z^{\prime}(t)$,
or $2 x x^{\prime}+2 y y^{\prime}=2 z z^{\prime}$.
Divide both sides by 2: $x x^{\prime}+y y^{\prime}=z z^{\prime}$.
It is given that $x^{\prime}=-30$ and $y^{\prime}=20$.
At 3 AM (i.e. 3 hours after midnight), $x=170-3 \cdot 30=80, y=3 \cdot 20=60$, and $z=\sqrt{x^{2}+y^{2}}=\sqrt{80^{2}+60^{2}}=\sqrt{6400+3600}=\sqrt{10000}=100$.
So we have $80 \cdot(-30)+60 \cdot 20=100 z^{\prime}$
$-2400+1200=100 z^{\prime}$
$z^{\prime}=-12$
Thus at 3 AM the distance between the ships is decreasing at the rate of $12 \mathrm{~km} / \mathrm{h}$.
12. Find the absolute maximum and minimum values of $f(x)=x^{4}+4 x^{3}+5$ on the interval $[-2,0]$.
Use the closed interval method:

1. Find the critical numbers. We did this in problem 9, and got $x=0$ and $x=-3$. However, -3 is not in our interval. Only 0 is.
2. Find the value of the function at the critical number $(s): f(0)=5$.
3. Find the value of the function at the endpoints of the interval: $f(-2)=-11$. The other endpoint is 0 , but we already found the value at 0 .
4. The largest of the above values, i.e. 5, is the absolute maximum value of the function on the given interval, and the smallest of the above values, i.e. -11 , is the absolute minimum value.
