MATH 75 Test 1 - Solutions June 6, 2005

Multiple choice questions: circle the correct answer

- 1. Find the domain of the function $f(x) = \frac{5}{\sqrt{x}}$. C. $x \neq 0$ **A.** x < 0**B.** $x \le 0$ **D.** $x \ge 0$ **E.**)x > 02. If $f(x) = \sin x$ and $g(x) = x^3$, find $(f \circ g)(x)$. A. $x^3 \sin x$ **B.** $3x^2 \cos x$ C. $\sin^3 x$ **D.**) $\sin x^3$ **E.** None of the above 3. Find the derivative of $\frac{x^3+1}{x^2}$. (C.) $1 - \frac{2}{x^3}$ D. $\frac{5x^4 + 2x}{x^4}$ **A.** $\frac{3x^2}{2x}$ **B.** $\frac{3}{2}x$ **E.** $\frac{2-x^3}{x^3}$ 4. Evaluate the limit: $\lim_{x \to 4} \frac{x-2}{x+4}$ **A.** 0 **B.** ∞ **C.** 1 **D**.) $\frac{1}{4}$ E. Does not exist 5. If f(0) = 1, f'(0) = 2, g(0) = 3, and g'(0) = 5, find the derivative of the product f(x)g(x) at x = 0.
 - **A.** -1 **B.** 0 **C.** 1 **D.** 10 **(E.)**11
- 6. If the curve $y = \sin x$ is stretched horizontally by a factor of 2 then the equation of the new curve is

A. $y = \sin x + 2$ **B.** $y = \sin(x+2)$ **C.** $y = \sin(\frac{1}{2}x)$ **D.** $y = \sin(2x)$ **E.** $y = 2\sin x$

Regular problems: show all your work

7. Sketch the graph of $f(x) = (x+1)^2 - 3$.

8. Find an equation of the tangent line to $y = (x+1)^2 - 3$ at (-3, 1). Draw this tangent line on the above graph.

$$y = x^{2} + 2x + 1 - 3 = x^{2} + 2x - 2$$

 $y' = 2x + 2$
 $y'(-3) = -4$, so the slope of the tangent line is -4.
An equation of the tangent line is then $y - 1 = -4(x + 3)$, or
 $y - 1 = -4x - 12$
 $y = -4x - 11$

9. Show that the equation 13x⁵ + 5x + 13 = 0 has a real root.
Let f(x) = 13x⁵ + 5x + 13. Since f(x) is a polynomial, it is continuous.
f(0) = 13 > 0, and f(-1) = -5 < 0, therefore by the Intermediate Value Theorem f(x) has a root in the interval (-1,0).

10. Evaluate the limit: $\lim_{x \to 9} \frac{9 - \sqrt{x}}{x - 9}$. If the limit is infinite, determine whether it is $+\infty$ or $-\infty$. Since $\lim_{x \to 9^+} \frac{9 - \sqrt{x}}{x - 9} = +\infty$ and $\lim_{x \to 9^-} \frac{9 - \sqrt{x}}{x - 9} = -\infty$, $\lim_{x \to 9} \frac{9 - \sqrt{x}}{x - 9}$ does not exist.

11. Let
$$f(x) = \begin{cases} 3-x & \text{, if } x < -1 \\ 5 & \text{, if } x = -1 \\ -2x+2 & \text{, if } -1 < x < 2 \\ x & \text{, if } x \ge 2 \end{cases}$$
.

Sketch the graph of f(x).

Is f(x) continuous at -1? No because $\lim_{x \to -1} f(x) \neq f(-1)$. Is f(x) continuous at 2? No because $\lim_{x \to 2} f(x)$ does not exist.

12. Find the derivative of the function $f(x) = \frac{x^2}{\sqrt{x}} \left(5 + \frac{1}{x}\right)$. Simplify your answer. $f(x) = \frac{x^2}{\sqrt{x}} \left(5 + \frac{1}{x}\right) = x^{3/2} \left(5 + x^{-1}\right) = 5x^{3/2} + x^{1/2}$. $f'(x) = 5 \cdot \frac{3}{2}x^{1/2} + \frac{1}{2}x^{-1/2} = \frac{15\sqrt{x}}{2} + \frac{1}{2\sqrt{x}}$