MATH 75
 Test 1 - Solutions
 June 6, 2005

Multiple choice questions: circle the correct answer

1. Find the domain of the function $f(x)=\frac{5}{\sqrt{x}}$.
A. $x<0$
B. $x \leq 0$
C. $x \neq 0$
D. $x \geq 0$
E. $x>0$
2. If $f(x)=\sin x$ and $g(x)=x^{3}$, find $(f \circ g)(x)$.
A. $x^{3} \sin x$
B. $3 x^{2} \cos x$
C. $\sin ^{3} x$
D. $\sin x^{3}$
E. None of the above
3. Find the derivative of $\frac{x^{3}+1}{x^{2}}$.
A. $\frac{3 x^{2}}{2 x}$
B. $\frac{3}{2} x$
C. $1-\frac{2}{x^{3}}$
D. $\frac{5 x^{4}+2 x}{x^{4}}$
E. $\frac{2-x^{3}}{x^{3}}$
4. Evaluate the limit: $\lim _{x \rightarrow 4} \frac{x-2}{x+4}$
A. 0
B. ∞
C. 1
(D. $\frac{1}{4}$
E. Does not exist
5. If $f(0)=1, f^{\prime}(0)=2, g(0)=3$, and $g^{\prime}(0)=5$, find the derivative of the product $f(x) g(x)$ at $x=0$.
A. -1
B. 0
C. 1
D. 10
E. 11
6. If the curve $y=\sin x$ is stretched horizontally by a factor of 2 then the equation of the new curve is
A. $y=\sin x+2$
B. $y=\sin (x+2)$
C. $y=\sin \left(\frac{1}{2} x\right)$
D. $y=\sin (2 x)$
E. $y=2 \sin x$

Regular problems: show all your work
7. Sketch the graph of $f(x)=(x+1)^{2}-3$.

8. Find an equation of the tangent line to $y=(x+1)^{2}-3$ at $(-3,1)$. Draw this tangent line on the above graph.
$y=x^{2}+2 x+1-3=x^{2}+2 x-2$
$y^{\prime}=2 x+2$
$y^{\prime}(-3)=-4$, so the slope of the tangent line is -4 .
An equation of the tangent line is then $y-1=-4(x+3)$, or
$y-1=-4 x-12$
$y=-4 x-11$
9. Show that the equation $13 x^{5}+5 x+13=0$ has a real root.

Let $f(x)=13 x^{5}+5 x+13$. Since $f(x)$ is a polynomial, it is continuous.
$f(0)=13>0$, and $f(-1)=-5<0$, therefore by the Intermediate Value Theorem $f(x)$ has a root in the interval $(-1,0)$.
10. Evaluate the limit: $\lim _{x \rightarrow 9} \frac{9-\sqrt{x}}{x-9}$. If the limit is infinite, determine whether it is $+\infty$ or $-\infty$.

Since $\lim _{x \rightarrow 9^{+}} \frac{9-\sqrt{x}}{x-9}=+\infty$ and $\lim _{x \rightarrow 9^{-}} \frac{9-\sqrt{x}}{x-9}=-\infty, \lim _{x \rightarrow 9} \frac{9-\sqrt{x}}{x-9}$ does not exist.
11. Let $f(x)=\left\{\begin{array}{lll}3-x & , \text { if } x<-1 \\ 5 & , \text { if } x=-1 \\ -2 x+2 & , \text { if } & -1<x<2 \\ x & , \text { if } x \geq 2\end{array}\right.$.

Sketch the graph of $f(x)$.

Is $f(x)$ coninuous at $-1 ? \quad$ No because $\lim _{x \rightarrow-1} f(x) \neq f(-1)$.
Is $f(x)$ continuous at $2 ? \quad$ No because $\lim _{x \rightarrow 2} f(x)$ does not exist.
12. Find the derivative of the function $f(x)=\frac{x^{2}}{\sqrt{x}}\left(5+\frac{1}{x}\right)$. Simplify your answer.
$f(x)=\frac{x^{2}}{\sqrt{x}}\left(5+\frac{1}{x}\right)=x^{3 / 2}\left(5+x^{-1}\right)=5 x^{3 / 2}+x^{1 / 2}$.
$f^{\prime}(x)=5 \cdot \frac{3}{2} x^{1 / 2}+\frac{1}{2} x^{-1 / 2}=\frac{15 \sqrt{x}}{2}+\frac{1}{2 \sqrt{x}}$

