# MATH 75 <br> <br> Test 2 - Solutions 

 <br> <br> Test 2 - Solutions}

June 16, 2005

## Multiple choice questions: circle the correct answer

1. Find the derivative of $f(x)=\sin \left(4 x^{2}\right)$.
A. $\cos \left(4 x^{2}\right)$
B. $\cos \left(8 x^{2}\right)$
C. $8 x \cos \left(4 x^{2}\right)$
D. $-4 x^{2} \cos (8 x)$
E. $-\cos (x)\left(4 x^{2}\right)$
2. Find the vertical asymptotes of $f(x)=\frac{1-x^{2}}{x^{2}-4 x}$.
A. $x=0$
B. $x=4$
C. $x=0$ and $x=4$
D. $y=-1$
E. $y=-4$
3. Evaluate the limit: $\lim _{x \rightarrow-\infty} \frac{x^{2}+10}{x^{3}-3}$.
A. 0
B. 1
C. $-\frac{10}{3}$
D. $\infty$
E. $-\infty$
4. If $f(t)=\frac{1}{x^{2}}$, find $f^{\prime \prime}(-1)$.
A. -6
B. -2
C. 0
D. 2
E. 6
5. How many inflection points does the function $y=x+\frac{1}{x}$ have?
A. 0
B. 1
C. 2
D. 3
E. infinitely many
6. Find the local minimum of $y=x+\frac{1}{x}$.
A. $x=-2$
B. $x=-1$
C. $x=0$
D. $x=1$
E. $x=2$

## Regular problems: show all your work

7. Show that the equation $x^{7}+x^{3}+x+2=0$ has exactly one real root.

Let $f(x)=x^{7}+x^{3}+x+2$. Since $f(0)=2>0$ and $f(-1)=-1<0$, by the Intermediate Value Theorem $f(x)$ has a root between -1 and 0 .
Now we have to show that $f(x)$ cannot have more than 1 real root. Suppose $f(x)$ has at least two roots, $a$ and $b$. Then $f(a)=f(b)=0$, and $f$ is continuous and differentiable everywhere (since it is a polynomial), therefore by Rolle's Theorem there is a point $c$ between $a$ and $b$ such that $f^{\prime}(c)=0$. But $f^{\prime}(x)=7 x^{6}+3 x^{2}+1>0$ for all $x$. This is a contradiction, therefore $f$ cannot have two distinct real roots. Therefore it has exactly one real root.
8. Find the linear approximation of the function $f(x)=\cos (x)$ at $a=\frac{\pi}{2}$.
$f^{\prime}(x)=-\sin (x), f^{\prime}\left(\frac{\pi}{2}\right)=-\sin \left(\frac{\pi}{2}\right)=-1$. Thus the slope of the tangent line is -1.
$f\left(\frac{\pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)=0$.
Then an equation of the tangent line is $y-0=-1\left(x-\frac{\pi}{2}\right)$
$y=-x+\frac{\pi}{2}$
The linear approximation is $L(x)=-x+\frac{\pi}{2}$
9. Find the intervals of increase and decrease of the function $f(x)=x^{4}-4 x^{3}+5$.
$f^{\prime}(x)=4 x^{3}-12 x^{2}=4 x^{2}(x-3)$
$f^{\prime}(x)=0$ at $x=0$ and $x=3$. Checking each interval, we have:
on $(-\infty, 0)$ and on $(0,3) f^{\prime}(x)<0$, so $f(x)$ is decreasing;
on $(3,+\infty) f^{\prime}(x)>0$, so $f(x)$ is increasing.
10. Find the slope of the tangent line to the curve $x \cos y+x y^{2}-3 y=0$ at the point $(0,0)$.

Differentiating $x \cos (y(x))+x(y(x))^{2}-3 y(x)=0$ implicitly with respect to $x$ gives:
$\cos (y(x))+x\left(-\sin (y(x)) y^{\prime}(x)+(y(x))^{2}+x 2 y(x) y^{\prime}(x)-3 y^{\prime}(x)=0\right.$, or $\cos y-x \sin (y) y^{\prime}+y^{2}+2 x y y^{\prime}-3 y^{\prime}=0$.
When $x=y=0, \quad 1-0+0+0-3 y^{\prime}=0$, so $3 y^{\prime}=1$, and $y^{\prime}=\frac{1}{3}$.
11. At noon, ship A is 120 km east of ship B. Ship A is sailing west at $20 \mathrm{~km} / \mathrm{h}$ and ship B is sailing south at $30 \mathrm{~km} / \mathrm{h}$. How fast is the distance between the ships changing at 2:00 PM?

First draw a diagram:

At noon


At 2:00 PM


Let $P$ be the starting point of ship $B$. Let $x=|A P|, y=|B P|$, and $z=|A B|$. Then $x^{2}+y^{2}=z^{2}$. Remember that all of these are functions of time:
$(x(t))^{2}+(y(t))^{2}=(z(t))^{2}$.
Differentiating both sides with respect to $t$ gives
$2 x(t) x^{\prime}(t)+2 y(t) y^{\prime}(t)=2 z(t) z^{\prime}(t)$, or, after simplifying,
$x x^{\prime}+y y^{\prime}=z z^{\prime}$.
At $2 P M, x=120-2 \cdot 20=80, y=2 \cdot 30=60$, and $z=\sqrt{x^{2}+y^{2}}=\sqrt{80^{2}+60^{2}}=100$.
Also, $x^{\prime}=-20$ (it's negative because the distance $x$ is decreasing) and $y^{\prime}=30$. Therefore $80(-20)+60 \cdot 30=100 z^{\prime}$
$-1600+1800=100 z^{\prime}$
$200=100 z^{\prime}$
$z^{\prime}=2$
So the distance between the ships is changing at a rate of $2 \mathrm{~km} / \mathrm{h}$.
12. Find the absolute maximum and minimum values of $f(x)=x^{4}-4 x^{3}+5$ on the interval $[-1,5]$.
First find the critical numbers of $f(x)$ :
$f^{\prime}(x)=4 x^{3}-12 x^{2}=4 x^{2}(x-3) . f^{\prime}(x)=0$ at $x=0$ and $x=3$. The values of $f$ at the critical numbers are: $f(0)=5$,
$f(3)=81-108+5=-22$.
Now find the values of $f$ at the endpoints of the interval:
$f(-1)=1+4+5=10$,
$f(5)=625-500+5=130$.
The largest of the above values, namely 130, is the absolute maximum value of $f(x)$ on the given interval, and the smallest of those values, namely -22 , is the absolute minimum value.

