MATH 76

Test 3 - Solutions

December 6, 2004

1. $r=0$ when $\sin (6 \theta)=0$. If $\theta=0, \sin (6 \theta)=0$. The smallest positive value of θ when $\sin (6 \theta)=0$ is when $6 \theta=\pi$, or $\theta=\frac{\pi}{6}$. So one loop lies between $\theta=0$ and $\theta=\frac{\pi}{6}$.
$A=\frac{1}{2} \int_{0}^{\pi / 6} 4 \sin ^{2}(6 \theta) d \theta=2 \int_{0}^{\pi / 6} \sin ^{2}(6 \theta) d \theta=2 \int_{0}^{\pi / 6} \frac{1}{2}(1-\cos (12 \theta)) d \theta$
$=\int_{0}^{\pi / 6}(1-\cos (12 \theta)) d \theta=\left.\left(\theta-\frac{\sin (12 \theta)}{12}\right)\right|_{0} ^{\pi / 6}=\left(\frac{\pi}{6}-0\right)=\frac{\pi}{6}$.
2. Since $r^{\prime}=12 \cos (6 \theta)$, the length of one loop is $\int_{0}^{\pi / 6} \sqrt{4 \sin ^{2}(6 \theta)+144 \cos ^{2}(6 \theta)} d \theta$.

There are 12 loops, so the length of the whole curve is $L=12 \int_{0}^{\pi / 6} \sqrt{4 \sin ^{2}(6 \theta)+144 \cos ^{2}(6 \theta)} d \theta$.
3. Complete the squares: $\left(x^{2}-2 x\right)+4\left(y^{2}+4 y\right)=19$
$\left(x^{2}-2 x+1\right)+4\left(y^{2}+4 y+4\right)=19+1+16$
$(x-1)^{2}+4(y+2)^{2}=6^{2}$
$\frac{(x-1)^{2}}{6^{2}}+\frac{(y+2)^{2}}{3^{2}}=1$
The center of the ellipse is $(1,-2), a=6, b=3$, so the vertecies are $(-5,-2)$ (left), $(7,-2)$ (right), ($1,-5$) (bottom), and $(1,1)$ (top).
4. $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{3 n+2+\sin (n)}{n+1}=\lim _{n \rightarrow \infty} \frac{3+\frac{2}{n}+\frac{\sin (n)}{n}}{1+\frac{1}{n}}=3$, so the sequence is convergent.
5. (a) $\sum_{n=1}^{\infty} e^{-n}=\sum_{n=1}^{\infty}\left(\frac{1}{e}\right)^{n}$ is a geometric series with $r=\frac{1}{e}$. Since $|r|<1$, the series is convergent. Note: the integral test can also be used.
(b) For the series $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{n}}$ we use the root test: $\lim _{n \rightarrow \infty} \sqrt[n]{\left|\frac{1}{(\ln n)^{n}}\right|}=\lim _{n \rightarrow \infty} \frac{1}{\ln n}=0<1$, so the series is convergent.
(c) We compare the series $\sum_{n=1}^{\infty} \frac{\arctan n}{n}$ with $\sum_{n=1}^{\infty} \frac{\pi / 4}{n}$. Since $0<\frac{\pi / 4}{n}<\frac{\arctan n}{n}$ for all positive integers n and $\sum_{n=1}^{\infty} \frac{\pi / 4}{n}=\frac{\pi}{4} \sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, the series $\sum_{n=1}^{\infty} \frac{\arctan n}{n}$ is also divergent.
6. The ratio test says that the series $\sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n}}$ is convergent when
$\lim _{n \rightarrow \infty}\left|\frac{x^{n+1} / \sqrt{n+1}}{x^{n} / \sqrt{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1} \sqrt{n}}{x^{n} \sqrt{n+1}}\right|=\lim _{n \rightarrow \infty}\left|x \sqrt{\frac{n}{n+1}}\right|=|x| \lim _{n \rightarrow \infty} \sqrt{\frac{1}{1+\frac{1}{n}}}=|x|<1$ and divergent when $|x|>1$. So the radius of convergence is 1 .
Check the endpoints: when $x=1, \sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$ is divergent, and when $x=-1, \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{1 / 2}}$ is convergent by the alternating series test. Therefore the interval of convergence is $[-1,1)$.
7. The Maclaurin series is $f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(0)}{6} x^{3}+\frac{f^{(4)}(0)}{24} x^{4}+\ldots$.
$f(0)=\ln (1)=0$,
$f^{\prime}(x)=\frac{1}{1+x}$, so $f^{\prime}(0)=1$,
$f^{\prime \prime}(x)=\left((1+x)^{-1}\right)^{\prime}=-(1+x)^{-2}$, so $f^{\prime \prime}(0)=-1$,
$f^{\prime \prime \prime}(x)=2(1+x)^{-3}$, so $f^{\prime \prime \prime}(0)=2$,
$f^{(4)}(x)=-6(1+x)^{-4}$, so $f^{(4)}(0)=-6$.
Thus we have $\ln (1+x)=x+\frac{-1}{2} x^{2}+\frac{2}{6} x^{3}+\frac{-6}{24} x^{4}+\ldots=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\ldots$.

