1. Estimate the value of $\int_{-5}^{7} x^{2} d x$ using 6 subintervals and
(a) the midpoint rule
(b) the trapezoidal rule
(c) Simpson's rule
2. Evaluate the integrals (if convergent).
(a) $\int_{2}^{\infty} e^{-x} d x$
(b) $\int_{-\infty}^{0} \sin x d x$
(c) $\int_{3}^{5} \frac{1}{x-5} d x$
(d) $\int_{0}^{13} \frac{1}{\sqrt{|x-4|}} d x$
3. Find the lenth of the curve:
(a) $y=\ln x, 1 \leq x \leq \sqrt{3}$
(b) $x=y^{3 / 2}, 4 \leq y \leq 9$
4. Find the area of the surface obtained by rotating
(a) $y=x^{3}, \quad 0 \leq x \leq 2$ about the x-axis,
(b) $y=1-x^{2}, \quad 0 \leq x \leq 1$ about the y-axis,
(c) $x=\sqrt{1-y^{2}}, \quad 0 \leq y \leq 1$ about the x-axis,
(d) $x=\sqrt{y}, \quad 1 \leq y \leq 9$ about the y-axis.
5. Find all constants c and k such that $y=c e^{k x}$ is a solution of $y^{\prime \prime}+y^{\prime}-12 y=0$.
6. Sketch
(a) a direction field for $y^{\prime}=\frac{x}{y}$,
(b) solution of $y^{\prime}=\frac{x}{y}$ satisfying $y(0)=1$,
(c) solution of $y^{\prime}=\frac{x}{y}$ satisfying $y(0)=-2$.
7. Solve the differential equation
(a) $y^{\prime}=\frac{x}{y}$
(b) $y^{\prime}=\frac{x y}{2 \ln y}$
8. A bacteria cultute starts with 800 bacteria and the growth rate is proportianal to the number of bacteria. After 3 hours the population is 2700 . Find the number of bacteria after 5 hours.
9. Eliminate the parameter to find a Cartesian equation of the curve. Sketh the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases.
(a) $x=2 \cos \theta, y=\sin ^{2} \theta$
(b) $x=e^{t}, y=e^{-t}$
10. Find an equation of the tangent line to the curve $x=\sin t, y=\sin (t+\sin t)$ at $(0,0)$.
11. (a) Plot the point whose polar coordinates are $\left(1, \frac{2 \pi}{3}\right)$. Find the Cartesian coordinates of this point.
(b) Find polar coordinates (with $r>0$) of the point whose Cartesian coordinates are $(\sqrt{3},-1)$.
