1. Find the area of the region enclosed by one loop of $r=\sin (4 \theta)$.
2. Find the length of the curve given by $r=5 \cos \theta, 0 \leq \theta \leq \frac{3 \pi}{4}$.
3. Find an equation and sketch the graph of the parabola with focus at $(1,-1)$ and directrix $y=5$.
4. Find the vertices, foci, and asymptotes of the hyperbola give by $9 x^{2}-y^{2}=9$ and sketch its graph.
5. Find the vertices and foci of the ellipse given by $9 x^{2}-18 x+4 y^{2}=27$ and sketch its graph.
6. Determine whether the sequence converges or diverges. If it converges, find the limit.
(a) $a_{n}=\frac{\sqrt{n}}{1+\sqrt{n}}$
(b) $a_{n}=2+\cos (n \pi)$
7. Determine whether the series is convergent or divergent. Explain your reason. If the series is convergent, find its sum.
(a) $\sum_{n=1}^{\infty} \arctan n$
(b) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{\sqrt{5}}{3^{n}}$
8. Determine whether the series is convergent or divergent. Explain your reason.
(a) $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n \sqrt{n}}$
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{2^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{n+1}{n!}$
(d) $\sum_{n=1}^{\infty} \frac{n^{2}-5 n}{n^{3}+n-1}$
(e) $\quad \sum_{n=1}^{\infty} \frac{1}{(n+1) \ln ^{2}\left((n+1)^{3}\right)}$
(f) $\sum_{n=1}^{\infty} \frac{n^{n}}{3^{1+3 n}}$
9. Find the radius of convergence and the interval of convergence of the series.
(a) $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{x^{n}}{n 3^{n}}$
10. Find a power series representation for $\frac{x}{4 x+1}$ and determine the interval of convergence.
11. Evaluate the integral $\int \frac{1}{1+x^{4}} d x$ as a power series.
12. Find the Taylor series for $f(x)=\frac{1}{x}$ at $a=1$.
