Practice problems for test 3

- 1. Find the area of the region enclosed by one loop of $r = \sin(4\theta)$.
- 2. Find the length of the curve given by $r = 5\cos\theta$, $0 \le \theta \le \frac{3\pi}{4}$.
- 3. Find an equation and sketch the graph of the parabola with focus at (1, -1) and directrix y = 5.
- 4. Find the vertices, foci, and asymptotes of the hyperbola give by $9x^2 y^2 = 9$ and sketch its graph.
- 5. Find the vertices and foci of the ellipse given by $9x^2 18x + 4y^2 = 27$ and sketch its graph.
- 6. Determine whether the sequence converges or diverges. If it converges, find the limit.

(a)
$$a_n = \frac{\sqrt{n}}{1 + \sqrt{n}}$$
 (b) $a_n = 2 + \cos(n\pi)$

7. Determine whether the series is convergent or divergent. Explain your reason. If the series is convergent, find its sum.

(a)
$$\sum_{n=1}^{\infty} \arctan n$$
 (b) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt{5}}{3^n}$

8. Determine whether the series is convergent or divergent. Explain your reason.

(a)
$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{n\sqrt{n}}$$
 (b) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{2^n}$
(c) $\sum_{n=1}^{\infty} \frac{n+1}{n!}$ (d) $\sum_{n=1}^{\infty} \frac{n^2 - 5n}{n^3 + n - 1}$
(e) $\sum_{n=1}^{\infty} \frac{1}{(n+1)\ln^2((n+1)^3)}$ (f) $\sum_{n=1}^{\infty} \frac{n^n}{3^{1+3n}}$

9. Find the radius of convergence and the interval of convergence of the series.

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$
 (b) $\sum_{n=1}^{\infty} \frac{x^n}{n^{3n}}$

- 10. Find a power series representation for $\frac{x}{4x+1}$ and determine the interval of convergence.
- 11. Evaluate the integral $\int \frac{1}{1+x^4} dx$ as a power series.
- 12. Find the Taylor series for $f(x) = \frac{1}{x}$ at a = 1.

Math 76