1. Find the area of the region enclosed by one loop of $r=\sin (4 \theta)$.

Since $r=0$ when $4 \theta=0$ and when $4 \theta=\pi$, i.e. when $\theta=0$ and when $\theta=\frac{\pi}{4}$, one loop lies in the region $0 \leq \theta \leq \frac{\pi}{4}$.

$$
A=\frac{1}{2} \int_{0}^{\pi / 4} \sin ^{2}(4 \theta) d \theta=\frac{1}{4} \int_{0}^{\pi / 4}(1-\cos (8 \theta)) d \theta=\left.\frac{1}{4}\left(\theta-\frac{\sin (8 \theta)}{8}\right)\right|_{0} ^{\pi / 4}=\frac{\pi}{16}
$$

2. Find the length of the curve given by $r=5 \cos \theta, 0 \leq \theta \leq \frac{3 \pi}{4}$.

$$
\begin{aligned}
& L=\int_{0}^{\frac{3 \pi}{4}} \sqrt{(5 \cos \theta)^{2}+(-5 \sin \theta)^{2}} d \theta=\int_{0}^{\frac{3 \pi}{4}} \sqrt{25 \cos ^{2} \theta+25 \sin ^{2} \theta} d \theta=\int_{0}^{\frac{3 \pi}{4}} \sqrt{25} d \theta \\
& =\int_{0}^{\frac{3 \pi}{4}} 5 d \theta=5 \cdot \frac{3 \pi}{4}=\frac{15 \pi}{4} .
\end{aligned}
$$

3. Find an equation and sketch the graph of the parabola with focus at $(1,-1)$ and directrix $y=5$.

The distance between the focus and the directrix is 6 , therefore the distance between the focus and the vertex is 3, so the vertex is at $(1,2)$. Since the vertex and the focus are below the directrix, the parabola opens downward. So $p=-3, a=\frac{1}{4 p}=-\frac{1}{12}$. The equation is $y=-\frac{1}{12}(x-1)^{2}+2$.

4. Find the vertices, foci, and asymptotes of the hyperbola give by $9 x^{2}-y^{2}=9$ and sketch its graph. Divide both sides of the given equation by 9: $x^{2}-\frac{y^{2}}{9}=1$ or $\frac{x^{2}}{1^{2}}-\frac{y^{2}}{3^{2}}=1$, so $a=1, b=3$. Then $c=\sqrt{1^{2}+3^{2}}=\sqrt{10}$.
Therefore the vertices are at $(1,0)$ and $(-1,0)$, foci are at $(\sqrt{10}, 0)$ and $(-\sqrt{10}, 0)$, and asymptotes are $y= \pm 3 x$.

5. Find the vertices and foci of the ellipse given by $9 x^{2}-18 x+4 y^{2}=27$ and sketch its graph.

Complete the square: $9 x^{2}-18 x=9(x-m)^{2}+n$
$9 x^{2}-18 x=9 x^{2}-18 m x+9 m^{2}+n$
$m=1, n=-0$, so $9 x^{2}-18 x=9(x-1)^{2}-9$.
Then the given equation can be written as $9(x-1)^{2}-9+4 y^{2}=27$
$9(x-1)^{2}+4 y^{2}=36$
Divide both sides by 36:
$\frac{(x-1)^{2}}{4}+\frac{y^{2}}{9}=1$
$\frac{(x-1)^{2}}{2^{2}}+\frac{y^{2}}{3^{2}}=1$
$a=2, b=3, c=\sqrt{3^{2}-2^{2}}=\sqrt{5}$.
Therefore the center is at $(1,0)$, and vertices are at $(3,0),(-1,0),(1,3),(1,-3)$, foci are at $(1, \sqrt{5})$ and $(1,-\sqrt{5})$.

6. Determine whether the sequence converges or diverges. If it converges, find the limit.
(a) $a_{n}=\frac{\sqrt{n}}{1+\sqrt{n}}$
$\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{1+\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{1}{\frac{1}{\sqrt{n}}+1}=1$, so the sequence converges.
(b) $a_{n}=2+\cos (n \pi)$
$a_{n}=\left\{\begin{array}{ll}1 & \text { when } n \text { is odd } \\ 3 & \text { when } n \text { is even }\end{array}\right.$, so the sequence does not have a limit.
7. Determine whether the series is convergent or divergent. Explain your reason. If the series is convergent, find its sum.
(a) $\sum_{n=1}^{\infty} \arctan n$
$\lim _{n \rightarrow \infty} \arctan n=\frac{\pi}{2} \neq 0$, so the series diverges by the test for divergence.
(b) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{\sqrt{5}}{3^{n}}$
$\sum_{n=1}^{\infty}(-1)^{n-1} \frac{\sqrt{5}}{3^{n}}=\sum_{n=1}^{\infty} \frac{\sqrt{5}}{3}\left(\frac{-1}{3}\right)^{n-1}=\frac{\sqrt{5}}{3} \frac{1}{1-\left(-\frac{1}{3}\right)}=\frac{\sqrt{5}}{3} \frac{1}{4 / 3}=\frac{\sqrt{5}}{4}$.
8. Determine whether the series is convergent or divergent. Explain your reason.
(a) $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n \sqrt{n}}$
$\frac{\sin ^{2} n}{n \sqrt{n}} \leq \frac{1}{n \sqrt{n}}$, and $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ converges because it is a p-series with $p=\frac{3}{2}>1$, so by the comparison test $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n \sqrt{n}}$ converges.
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{2^{n}}$

This series satistfies all the conditions of the alternating series test: $\frac{n}{2^{n}}>0$,
$\frac{n+1}{2^{n+1}} \leq \frac{n}{2^{n}}$ because multiplying both sides of this by 2^{n} gives $n+1 \leq 2 n$ which is true for all $n \geq 1$,
and using L'Hospital's rule we have $\lim _{n \rightarrow \infty} \frac{n}{2^{n}}=\lim _{x \rightarrow \infty} \frac{x}{2^{x}}=\lim _{x \rightarrow \infty} \frac{1}{\ln (2) 2^{x}}=0$.
Therefore the series is convergent.
(c) $\sum_{n=1}^{\infty} \frac{n+1}{n!}$
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{n+2}{(n+1)!}}{\frac{n+1}{n!}}=\lim _{n \rightarrow \infty} \frac{(n+2) n!}{(n+1)(n+1)!}=\lim _{n \rightarrow \infty} \frac{n+2}{(n+1)(n+1)}$
$=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}+\frac{2}{n^{2}}}{\left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)}=0<1$, therefore the series is convergent by the ratio test.
(d) $\sum_{n=1}^{\infty} \frac{n^{2}-5 n}{n^{3}+n-1}$

We compare this series with $\sum_{n=1}^{\infty} \frac{1}{n}$.
Since $\lim _{n \rightarrow \infty} \frac{\frac{n^{2}-5 n}{n^{3}+n-1}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\left(n^{2}-5 n\right) n}{n^{3}+n-1}=\lim _{n \rightarrow \infty} \frac{n^{3}-5 n^{2}}{n^{3}+n-1}=1$ and the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is diver gent, the given series is also divergent by the limit comparison test.
(e) $\sum_{n=1}^{\infty} \frac{1}{(n+1) \ln ^{2}\left((n+1)^{3}\right)}$
$\int_{1}^{\infty} \frac{1}{(x+1) \ln ^{2}\left((x+1)^{3}\right)} d x=\int_{1}^{\infty} \frac{1}{(x+1)\left(\ln \left((x+1)^{3}\right)\right)^{2}} d x=\int_{1}^{\infty} \frac{1}{(x+1)(3 \ln (x+1))^{2}} d x$
$=\int_{1}^{\infty} \frac{1}{9(x+1) \ln ^{2}(x+1)} d x=\frac{1}{9} \int_{1}^{\infty} \frac{1}{(x+1) \ln ^{2}(x+1)} d x=\frac{1}{9} \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{(x+1) \ln ^{2}(x+1)} d x$
Make the substitution $u=\ln (x+1)$, $d u=\frac{1}{x+1} d x$, change the limits of integration: the lower limit becomes $\ln (2)$, and the upper limit becomes $\ln (t+1)$. Then we have
$\frac{1}{9} \lim _{t \rightarrow \infty} \int_{\ln (2)}^{\ln (t+1)} \frac{1}{u^{2}} d u=\frac{1}{9} \lim _{t \rightarrow \infty}\left(-\left.\frac{1}{u}\right|_{\ln (2)} ^{\ln (t+1)}\right)=\frac{1}{9} \lim _{t \rightarrow \infty}\left(-\frac{1}{\ln (t+1)}+\frac{1}{\ln (2)}\right)=\frac{1}{9 \ln (2)}$.
Since the integral is convergent, the given series is convergent by the integral test.
(f) $\sum_{n=1}^{\infty} \frac{n^{n}}{3^{1+3 n}}$
$\lim _{n \rightarrow \infty}|a|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left(\frac{n^{n}}{3^{1+3 n}}\right)^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left(\frac{1}{3} \cdot \frac{n^{n}}{3^{3 n}}\right)^{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{1}{3^{\frac{1}{n}}} \cdot \frac{n}{3^{3}}=\infty$, therefore the series is divergent by the root test.
9. Find the radius of convergence and the interval of convergence of the series.
(a) $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1} n^{2}}{(n+1)^{2} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n^{2}}{(n+1)^{2}} x\right|=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}} \cdot \lim _{n \rightarrow \infty}|x|=|x|$.
By the ratio test the series is convergent when $|x|<1$ and divergent when $|x|>1$. Thus the radius of convergence is 1 .
If $x=1, \sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent.
If $x=-1, \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$ is also convergent, therefore the interval of convergence is $[-1,1]$.
(b) $\sum_{n=1}^{\infty} \frac{x^{n}}{n 3^{n}}$
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1} n 3^{n}}{(n+1) 3^{n+1} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n}{(n+1) 3} x\right|=\lim _{n \rightarrow \infty} \frac{n}{(n+1) 3} \lim _{n \rightarrow \infty}|x|=\frac{|x|}{3}$.
By the ratio test the series is convergent when $\frac{|x|}{3}<1$, i.e. $|x|<3$, and divergent when $\frac{|x|}{3}>1$, i.e. $|x|>3$. Thus the radius of convergence is 3 .

If $x=3, \sum_{n=1}^{\infty} \frac{3^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
If $x=-3, \quad \sum_{n=1}^{\infty} \frac{(-3)^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ is convergent, therefore the interval of convergence is $[-3,3)$.
10. Find a power series representation for $\frac{x}{4 x+1}$ and determine the interval of convergence.
$\frac{x}{4 x+1}=x \frac{1}{4 x+1}=x \frac{1}{1-(-4 x)}=x \sum_{n=0}^{\infty}(-4 x)^{n}=x \sum_{n=0}^{\infty}(-4)^{n} x^{n}=\sum_{n=0}^{\infty}(-4)^{n} x^{n+1}$
$=x-4 x^{2}+16 x^{3}-64 x^{4}+\ldots$
Since $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\ddot{(-4)^{n+1} x^{n+2}}}{(-4)^{n} x^{n+1}}\right|=\lim _{n \rightarrow \infty}|-4 x|=\lim _{n \rightarrow \infty}|4 x|$,
the series is convergent when $|4 x|<1$ i.e. $|x|<\frac{1}{4}$, and divergent when $|4 x|>1$ i.e. $|x|>\frac{1}{4}$.
If $x=\frac{1}{4}, \sum_{n=0}^{\infty}(-4)^{n}\left(\frac{1}{4}\right)^{n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4}$ is divergent.
If $x=-\frac{1}{4}, \sum_{n=0}^{\infty}(-4)^{n}\left(-\frac{1}{4}\right)^{n+1}=\sum_{n=0}^{\infty}-\frac{1}{4}$ is also divergent, so the interval of convergence is $\left(-\frac{1}{4}, \frac{1}{4}\right)$.
11. Evaluate the integral $\int \frac{1}{1+x^{4}} d x$ as a power series.

$$
\int \frac{1}{1+x^{4}} d x=\int \frac{1}{1-\left(-x^{4}\right)} d x=\int \sum_{n=0}^{\infty}\left(-x^{4}\right)^{n} d x=\int \sum_{n=0}^{\infty}(-1)^{n} x^{4 n} d x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+1}}{4 n+1}+C
$$

12. Find the Taylor series for $f(x)=\frac{1}{x}$ at $a=1$.

$$
f(x)=\frac{1}{x}=\frac{1}{(x-1)+1}=\frac{1}{1-(-(x-1))}=\sum_{n=0}^{\infty}(-(x-1))^{n}=\sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n}
$$

