CSU FRESNO MATH PROBLEM SOLVING

March 21, 2009

Topic 1: Equations and inequalities with radicals, exponents, and logs

1. (MH 9-10 2002) Solve: $2^{x}=\frac{1}{64}$
(a) $x=6$
(b) $x=-6$
(c) $x=4$
(d) none of the above

Solution. The equation can be rewritten as $2^{x}=2^{-6}$. Therefore $x=-6$.
2. (MH 11-12 2000) Solve for $\mathrm{x}: ~ 3^{\log _{3}(8 x-4)}=5$
(a) $\frac{9}{8}$
(b) $\frac{9}{4}$
(c) $\frac{8}{5}$
(d) $\frac{8}{9}$
(e) None of the above

Solution. Since $3^{\log _{3} a}=a$, the given equation is equivalent to $8 x-4=5$. Therefore $x=\frac{9}{8}$.
3. (MH 9-10 2005) Solve for $x: \sqrt{1+\sqrt{2+\sqrt{x}}}=3$.
(a) 78
(b) 3844
(c) 15
(d) none of the above

Solution. Squaring both sides, we get
$1+\sqrt{2}+\sqrt{x}=9$
$\sqrt{2+\sqrt{x}}=8$
$2+\sqrt{x}=64$
$\sqrt{x}=62$
$x=3844$
4. (MH 11-12 2005) How many real solutions are there to the equation $\sqrt{x^{2}+1}+\sqrt{x}=1$?
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4

Solution. The function \sqrt{x} is defined only for $x \geq 0$. But if $x>0$, then $\sqrt{x^{2}+1}+\sqrt{x}>1+0=1$. So $x=0$ is the only solution.
5. (MH 11-12 2003) How many roots does the equation $\sqrt{x^{2}+1}+\sqrt{x^{2}+2}=2$ have?
(a) 0
(b) 1
(c) 2
(d) 3
(e) None of the above

Solution. For any real number $x, \sqrt{x^{2}+1}+\sqrt{x^{2}+2} \geq 1+\sqrt{2}>2$, so the equation has no roots.
6. (MH 9-10 1998) Solve for x : $\left(6^{x+3} \cdot 6^{2 x-1}\right)=1$.
(a) $\frac{2}{3}$
(b) $\frac{3}{2}$
(c) $\frac{-2}{3}$
(d) none of the above

7. (MH 9-10 2005) Solve for x : $4^{x}-4^{x-1}=12$.
(a) 2
(b) 3
(c) 9
(d) none of the above

Solution. The equation can be rewritten as

$$
\begin{aligned}
& 4 \cdot 4^{x-1}-4^{x-1}=12 \\
& 3 \cdot 4^{x-1}=12 \\
& 4^{x-1}=4 \\
& x-1=1 \\
& x=2
\end{aligned}
$$

8. (MH 11-12 2008) Solve for x : $9^{x}-4 \cdot 3^{x+1}+27=0$
(a) $x=3$ and $x=9$
(b) $x=-1$ and $x=-2$
(c) $x=1$ and $x=2$
(d) $x=-3$ and $x=-9$

Solution. The equation can be rewritten as
$\left(3^{2}\right)^{x}-4 \cdot 3 \cdot 3^{x}+27=0$
$\left(3^{x}\right)^{2}-12 \cdot 3^{x}+27=0$.
Let $3^{x}=y$, then we get
$y^{2}-12 y+27=0$
$(y-3)(y-9)=0$
This equation has two roots: $y=3$ and $y=9$.
If $y=3$, then $3^{x}=3$ gives $x=1$. If $y=9$, then $3^{x}=9$ gives $x=2$.
So the original equation has two roots: $x=1$ and $x=2$.
9. (LF 9-12 2000) The real solution to the equation $\frac{81^{x+2}}{9^{3 x+4}}=9^{5 x+1}$ is $x=$
(a) $\frac{-1}{3}$
(b) $\frac{-2}{3}$
(c) $\frac{-3}{4}$
(d) $\frac{-1}{6}$
(e) None of these

Solution. Let's simplify the left hand side:

$$
\begin{aligned}
& \frac{\left(9^{2}\right)^{x+2}}{9^{3 x+4}}=9^{5 x+1} \\
& \frac{9^{2 x+4}}{9^{3 x+4}}=9^{5 x+1} \\
& 9^{-x}=9^{5 x+1} \\
& -x=5 x+1 \\
& 6 x=-1 \\
& x=\frac{-1}{6}
\end{aligned}
$$

10. (MH 11-12 2005) Solve for $x: 3\left(8^{x}\right)+9\left(4^{x}\right)-30\left(2^{x}\right)=0$.
(a) 0
(b) 1
(c) 2
(d) -5
(e) There is no solution

Solution. The equation can be rewritten as
$3\left(\left(2^{3}\right)^{x}\right)+9\left(\left(2^{2}\right)^{x}\right)-30\left(2^{x}\right)=0$
$3\left(\left(2^{x}\right)^{3}\right)+9\left(\left(2^{x}\right)^{2}\right)-30\left(2^{x}\right)=0$
Let $2^{x}=y$, then we have
$3 y^{3}+9 y^{2}-30 y=0$
$3 y\left(y^{2}+3 y-10\right)=0$
$3 y(y-2)(y+5)=0$
We get three solutions: $y=0, y=2$, and $y=-5$.
The equations $2^{x}=0$ and $2^{x}=-5$ have no roots, and $2^{x}=2$ has one root $x=1$.
11. (MH 11-12 2003) Given that $9^{x}+9^{-x}=34$, find $3^{x}+3^{-x}$.
(a) 3
(b) 6
(c) 9
(d) 27
(e) 81

Solution. Since $\left(3^{x}+3^{-x}\right)^{2}=\left(3^{x}\right)^{2}+2 \cdot 3^{x} 3^{-x}+\left(3^{-x}\right)^{2}=9^{x}+2+9^{-x}=34+2=36$, $3^{x}+3^{-x}=6$.
Note: the value -6 is impossible because $3^{x}+3^{-x}>0$.
12. (MH 11-12 1997) If $5^{3 \log _{5} x}=64$, then
(a) $x=5$
(b) $x=125$
(c) $x=\frac{64}{3}$
(d) $x=4$
(e) None of the above

Solution. The equation can be rewritten as

$$
\begin{aligned}
& \left(5^{\log _{5} x}\right)^{3} \\
& 5^{\log _{5} x}=64 \\
& x=4 .
\end{aligned}
$$

13. (MH 11-12 2005) Find the value of n if $\log _{2}\left(\log _{5}\left(\log _{4} 2^{n}\right)\right)=2$.
(a) 0
(b) 4
(c) 25
(d) 625
(e) 1,250

Solution. Raising 2 to both sides of this equation and simplifying, we get $2^{\log _{2}\left(\log _{5}\left(\log _{4} 2^{n}\right)\right)}=2^{2}$
$\log _{5}\left(\log _{4} 2^{n}\right)=4$
$5^{\log _{5}\left(\log _{4} 2^{n}\right)}=5^{4}$
$\log _{4} 2^{n}=625$
$4^{\log _{4} 2^{n}}=4^{625}$
$2^{n}=4^{625}$
$2^{n}=\left(2^{2}\right)^{625}$
$2^{n}=2^{1,250}$
$n=1,250$
14. (MH 11-12 2003) Find the natural n such that $\log _{2} 3 \cdot \log _{3} 4 \cdot \log _{4} 5 \cdot \ldots \cdot \log _{n}(n+1)=10$
(a) 9
(b) 10
(c) 100
(d) 1023
(e) Does not exist

Solution. Using the change of base formula $\log _{a} b=\frac{\log _{c} b}{\log _{c} a}$, the given equation can be rewritten as $\log _{2} 3 \cdot \log _{3} 4 \cdot \log _{4} 5 \cdot \ldots \cdot \log _{n}(n+1)=10$
$\frac{\ln 3}{\ln 2} \cdot \frac{\ln 4}{\ln 3} \cdot \frac{\ln 5}{\ln 4} \cdot \ldots \cdot \frac{\ln (n+1)}{\ln n}=10$
$\frac{\ln (n+1)}{\ln 2}=10$
$\ln (n+1)=10 \ln 2$
$\ln (n+1)=\ln 2^{10}$
$n+1=2^{10}$
$n=2^{10}-1$
$n=1023$
15. (MH 9-10 1998) Solve for $x: \log _{10}\left(x^{2}+3 x\right)+\log _{10}(5 x)=1+\log _{10}(2 x)$.
(a) 10
(b) 1
(c) -5
(d) $\frac{1}{5}$

Solution. Using $\log _{a} a=1$ and $\log _{a} b+\log _{a} c=\log _{a}(b c)$, the given equation can be rewritten as $\log _{10}\left(x^{2}+3 x\right)+\log _{10}(5 x)=\log _{10} 10+\log _{10}(2 x)$
$\log _{10}\left(\left(x^{2}+3 x\right)(5 x)\right)=\log _{10}(10 \cdot 2 x)$
$\left(x^{2}+3 x\right)(5 x)=20 x$
$5 x\left(x^{2}+3 x\right)-20 x=0$
$5 x\left(x^{2}+3 x-4\right)=0$
$5 x(x+4)(x-1)=0$.
This equation has three roots: $x=0, x=-4$, and $x=1$. The first two values are not roots of the original equation because the logarithmic function is defined only at positive values. So the only solution is $x=1$.
16. (MH 11-12 2006) Solve for $x: \log _{2} x+\log _{3} x=3+\log _{2} 3+\log _{3} 4$
(a) $\frac{1}{6}$
(b) $\frac{2}{3}$
(c) $\frac{3}{2}$
(d) 6
(e) 12

Solution. Using the base of change formula, the equation can be rewritten as

$$
\begin{aligned}
& \frac{\ln x}{\ln 2}+\frac{\ln x}{\ln 3}=3+\frac{\ln 3}{\ln 2}+\frac{\ln 4}{\ln 3} \\
& \frac{\ln x \ln 3+\ln x \ln 2}{\ln 2 \ln 3}=\frac{3 \ln 2 \ln 3+(\ln 3)^{2}+\ln 4 \ln 2}{\ln 2 \ln 3} \\
& \ln x \ln 3+\ln x \ln 2=3 \ln 2 \ln 3+(\ln 3)^{2}+\ln 4 \ln 2 \\
& \ln x(\ln 3+\ln 2)=3 \ln 2 \ln 3+(\ln 3)^{2}+\ln \left(2^{2}\right) \ln 2 \\
& \ln x(\ln 3+\ln 2)=3 \ln 2 \ln 3+(\ln 3)^{2}+2(\ln 2)^{2} \\
& \ln x=\frac{3 \ln 2 \ln 3+(\ln 3)^{2}+2(\ln 2)^{2}}{\ln 3+\ln 2} \\
& \ln x=\frac{(2 \ln 2+\ln 3)(\ln 2+\ln 3)}{\ln 3+\ln 2} \\
& \ln x=2 \ln 2+\ln 3 \\
& \ln x=\ln 4+\ln 3
\end{aligned}
$$

$\ln x=\ln 12$
$x=12$
17. (MH 11-12 2005) Solve $x-x e^{3 x-8}=0$.
(a) $x=0$
(b) $x=\frac{8}{3}$
(c) $x=-\frac{8}{3}$
(d) $x=\frac{3}{8}$
(e) $x=0$ and $x=\frac{8}{3}$

Solution. Factor the left hand side:
$x\left(1-e^{3 x-8}\right)=0$.
Either $x=0$ or $1-e^{3 x-8}=0$. In the second case, $e^{3 x-8}=1$, then $3 x-8=0$, so $x=\frac{8}{3}$.
So we have two solutions: $x=0$ and $x=\frac{8}{3}$.
18. (MH 11-12 2003) Solve for x : $\sqrt{x^{2}-x-12}<x$
(a) $x \in(-12,+\infty)$
(b) $x \in[4,+\infty)$
(c) $x \in(12,+\infty)$
(d) No solutions exist
(e) None of the above

Solution. Squaring both sides (and remembering that both x and $x^{2}-x-12$ must be nonnegative) we get
$x^{2}-x-12<x^{2}$
$-x-12<0$
$x>-12$.
However, we also need $x \geq 0$ and $x^{2}-x-12 \geq 0$. The latter implies $(x-4)(x+3) \geq 0$, so the solution set is the intersection of:
$[-12,+\infty),[0,+\infty)$, and $(-\infty,-3] \cup[4,+\infty)$. The anser is $x \in[4,+\infty)$.
19. (MH 11-12 2003) Solve for $x: \log _{x^{2}-3} 729>3$
(a) $x \in(0,+\infty)$
(b) $x \in(-\sqrt{12},-2)$
(c) $x \in(3,+\infty)$
(d) $x \in(2, \sqrt{12})$
(e) (b) or (d)

Solution. First we note that $x^{2}-3>0$.
Case I: $x^{2}-3>1$, i.e. $x^{2}>4$, i.e. $x>2$. Then the given inequality is equivalent to
$729>\left(x^{2}-3\right)^{3}$
$9>x^{2}-3$
$x^{2}<12$.
So in this case we get $x \in(2, \sqrt{12})$.

Case II: $0<x^{2}-3<1$, i.e. $3<x^{2}<4$. Then the given inequality is equivalent to $729<\left(x^{2}-3\right)^{3}$ $9<x^{2}-3$
$x^{2}>12$. But the system $3<x^{2}<4, x^{2}>12$ has no solutions.
So the answer is $x \in(2, \sqrt{12})$.

Topic 2: Complex numbers

Simplifying/evaluating expressions involving complex numbers

1. (MH 11-12 2005) Divide $\frac{3-2 i}{2+4 i}$.
(a) $-\frac{1}{10}-\frac{2}{5} i$
(b) $-\frac{1}{10}-\frac{4}{5} i$
(c) $\frac{7}{10}+\frac{2}{5} i$
(d) $\frac{4}{5}-\frac{1}{10} i$
(e) None of the above

Solution. Multiplying the numerator and the denominator by the conjugate of the denominator and simplifying, we get
$\frac{3-2 i}{2+4 i}=\frac{(3-2 i)(2-4 i)}{(2+4 i)(2-4 i)}=\frac{6-12 i-4 i-8}{4+16}=\frac{-2-16 i}{20}=-\frac{1}{10}-\frac{4}{5} i$.
2. (MH 11-12 2005) If i is the imaginary number, what is i^{85} ?
(a) 1
(b) -1
(c) i
(d) $-i$
(e) None of the above

Solution. Since $i^{2}=-1$, we have $i^{85}=i^{84} \cdot i=\left(i^{2}\right)^{42} \cdot i=(-1)^{42} \cdot i=1 \cdot i=i$.
3. (MH 9-10 2005) Simplify $\left(1-(-i)^{318}\right)^{2}$.
(a) 4
(b) i
(c) 0
(d) none of the above

Solution. Since $i^{2}=-1$, we have $\left(1-(-i)^{318}\right)^{2}=\left(1-i^{318}\right)^{2}=\left(1-\left(i^{2}\right)^{159}\right)^{2}=\left(1-(-1)^{159}\right)^{2}=$ $(1-(-1))^{2}=2^{2}=4$.
4. (MH 11-12 2005) Determine the real part of $(1+2 i)^{5}$.
(a) 1
(b) 41
(c) 17
(d) 121
(e) None of the above.

Solution. Using the binomial theorem, we have $(1+2 i)^{5}=1+5 \cdot 2 i+10(2 i)^{2}+10(2 i)^{3}+5(2 i)^{4}+$ $(2 i)^{5}=1+10 i-40-80 i+80+32 i=41-38 i$. The real part is 41 .
5. (MH 9-10 2002) Find: $\left(-\frac{1}{2}+\frac{\sqrt{3} i}{2}\right)^{3}$
(a) i
(b) $-i$
(c) -1
(d) 1

Solution 1. $\left(-\frac{1}{2}+\frac{\sqrt{3} i}{2}\right)^{3}=\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)^{2} \cdot \frac{\sqrt{3} i}{2}+3\left(-\frac{1}{2}\right)\left(\frac{\sqrt{3} i}{2}\right)^{2}+\left(\frac{\sqrt{3} i}{2}\right)^{3}=-\frac{1}{8}+\frac{3 \sqrt{3} i}{8}+\frac{3 \cdot 3}{8}-$ $\frac{3 \sqrt{3} i}{8}=\frac{-1+3 \sqrt{3} i+9-3 \sqrt{3} i}{8}=\frac{8}{8}=1$.
Note. The above solution is the most straighforward, but it takes time to expand the expression. The solution given below is faster, but requires knowlege of a polar representation.
Solution 2. The polar representation of the number $-\frac{1}{2}+\frac{\sqrt{3} i}{2}=\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)$ is $e^{\frac{2 \pi}{3} i}$, and its cube is $\left(e^{\frac{2 \pi}{3} i}\right)^{3}=e^{2 \pi i}=\cos (2 \pi)+i \sin (2 \pi)=1$.
6. (MH 11-12 2005) Determine the polar representation of $(\sqrt{3}-i)^{4}$.
(a) $16 e^{i \frac{2 \pi}{3}}$
(b) $16 e^{i \frac{4 \pi}{3}}$
(c) $16 e^{i \frac{5 \pi}{3}}$
(d) 16
(e) None of the above

Solution. Since $\sqrt{3}-i=2\left(\frac{\sqrt{3}}{2}-\frac{1}{2} i\right)=2\left(\cos \left(-\frac{\pi}{6}\right)+i \sin \left(-\frac{\pi}{6}\right)\right)=2 e^{-\frac{\pi}{6} i}$, $(\sqrt{3}-i)^{4}=\left(2 e^{-\frac{\pi}{6} i}\right)^{4}=16 e^{-\frac{2 \pi}{3} i}=16 e^{i \frac{4 \pi}{3}}$.
7. (MH 11-12 2000) Simplify: $\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right)^{10}$
(a) i
(b) $-i$
(c) 1
(d) -1
(e) None of the above

Solution. Using the polar representation, we have
$\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right)^{10}=\left(\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right)^{10}=\cos \left(\frac{10 \pi}{4}\right)+i \sin \left(\frac{10 \pi}{4}\right)=\cos \left(\frac{5 \pi}{2}\right)+i \sin \left(\frac{5 \pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)+$ $i \sin \left(\frac{\pi}{2}\right)=i$.
8. (MH 11-12 2005) Determine the polar representation of $\frac{2-2 i}{1+i}$.
(a) $\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
(b) $\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$
(c) $2\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$
(d) $2\left(\cos \frac{\pi}{2}-i \sin \frac{\pi}{2}\right)$
(e) None of the above

Solution. Let's divide first, and then convert to the polar representation: $\frac{2-2 i}{1+i}=\frac{(2-2 i)(1-i)}{(1+i)(1-i)}=\frac{2-2 i-2 i-2}{1+1}=$ $\frac{-4 i}{2}=-2 i=2(-i)=2\left(\cos \frac{\pi}{2}-i \sin \frac{\pi}{2}\right)$.
9. (MH 11-12 2000) Convert to polar notation and multiply: $(1+i)(\sqrt{3}-i)$
(a) $2 \sqrt{3}\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$
(b) $2 \sqrt{2}\left(\cos 15^{0}+i \sin 15^{0}\right)$
(c) $2 \sqrt{3}\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$
(d) $2 \sqrt{2}\left(\cos 45^{0}+i \sin 45^{\circ}\right)$
(e) None of the above

Solution. Just following the directions... $(1+i)(\sqrt{3}-i)=\sqrt{2}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right) \cdot 2\left(\frac{\sqrt{3}}{2}-\frac{1}{2} i\right)=$ $\sqrt{2}\left(\cos 45^{0}+i \sin 45^{0}\right) \cdot 2\left(\cos \left(-30^{0}\right)+i \sin \left(-30^{0}\right)\right)=2 \sqrt{2}\left(\cos 15^{0}+i \sin 15^{0}\right)$.
10. (LF 9-12 2000) Suppose $z=1-i$. The real part of $1+z+z^{2}+z^{3}+\ldots+z^{99}$ is
(a) 0
(b) -1
(c) $-1-2^{50}$
(d) $-2^{49} \sqrt{2}$
(e) None of these

Solution. Using the formula for the sum of a geometric series, we have
$1+z+z^{2}+z^{3}+\ldots+z^{99}=\frac{1-z^{100}}{1-z}=\frac{1-(1-i)^{100}}{1-(1-i)}=\frac{1-\left((1-i)^{2}\right)^{50}}{i}=\frac{1-(-2 i)^{50}}{i}=\frac{1-\left((2 i)^{2}\right)^{25}}{i}=\frac{\left(1-(-4)^{25}\right) i}{-1}=$ $-\left(1-(-4)^{25}\right) i$. This number has real part 0 because $1-(-4)^{25}$ is real.
11. (MH 11-12 2005) Let $z=x+i y$. Determine the real part of z^{2} / \bar{z}.
(a) $\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$
(b) $\frac{3 x^{2} y+y^{3}}{x^{2}+y^{2}}$
(c) $\frac{3 x^{2} y-y^{3}}{x^{2}+y^{2}}$
(d) $\frac{x^{3}+3 x y^{2}}{x^{2}+y^{2}}$
(e) $\frac{x^{3}-3 x y^{2}}{x^{2}+y^{2}}$

Solution. Let's rewrite the expression in terms of x and y : $\frac{z^{2}}{\bar{z}}=\frac{(x+i y)^{2}}{x-i y}=\frac{(x+i y)^{3}}{(x-i y)(x+i y)}=\frac{x^{3}+3 x^{2} y i-3 x y^{2}-y^{3} i}{x^{2}+y^{2}}=\frac{\left(x^{3}-3 x y^{2}\right)+\left(3 x^{2} y-y^{3}\right) i}{x^{2}+y^{2}}$. The real part is $\frac{x^{3}-3 x y^{2}}{x^{2}+y^{2}}$.
12. (LF 9-12 2002) Suppose w and z are two complex numbers that satisfy $w z=1$ and $w+z=-1$. Then $w^{16}+z^{16}=$
(a) i
(b) 1
(c) -1
(d) $-i$
(e) None of these

Solution 1. Solving $w+z=-1$ for w and substituting into the other equation, we get:

$$
\begin{aligned}
& w=-1-z \\
& (-1-z) z=1 \\
& -z-z^{2}=1 \\
& z^{2}+z+1=0 \\
& z=\frac{-1 \pm \sqrt{1-4}}{2} \\
& z=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i
\end{aligned}
$$

If $z=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$, then $w=-\frac{1}{2}-\frac{\sqrt{3}}{2} i$.
Note: if $z=-\frac{1}{2}-\frac{\sqrt{3}}{2} i$, then $w=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$, so z and w are switched and the value of $w^{16}+z^{16}$ is the same; so let's consider the case $z=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$ and $w=-\frac{1}{2}-\frac{\sqrt{3}}{2} i$.
The polar representations are:
$z=\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)=e^{\frac{2 \pi}{3} i}$ and $w=\cos \left(-\frac{2 \pi}{3}\right)+i \sin \left(-\frac{2 \pi}{3}\right)=e^{-\frac{2 \pi}{3} i}$.
Then $w^{16}+z^{16}=\left(e^{-\frac{2 \pi}{3} i}\right)^{16}+\left(e^{\frac{2 \pi}{3} i}\right)^{16}=e^{-\frac{32 \pi}{3} i}+e^{\frac{32 \pi}{3} i}=e^{-\frac{2 \pi}{3} i}+e^{\frac{2 \pi}{3} i}=w+z=-1$.
Solution 2. The numbers w and z are roots of the equation $x^{2}+x+1=0$, therefore they are also roots of $x^{3}-1=0$. Thus $w^{3}=1$ and $z^{3}=1$. Then $w^{16}+z^{16}=w^{15} \cdot w+z^{15} \cdot z=\left(w^{3}\right)^{5} \cdot w+\left(z^{3}\right)^{5} \cdot z=w+z=-1$.

Roots of polynomials

Theorem. If $a+b i$ is a root of a polynomial with real coefficients, then $a-b i$ is also a root of this polynomial.
Corollary. A polynomial with real coefficients has an even number of nonreal complex roots.
13. (MH 11-12 1997) If a polynomial with real coefficients has $2+i \sqrt{5}$ and 6 as roots, then another root of the polynomial is:
(a) $-2+i \sqrt{5}$
(b) $6 i$
(c) $-2-i \sqrt{5}$
(d) There need not be another root.
(e) There is another root but it is none of the above.

Solution. If $2+i \sqrt{5}$ is a root of a polynomial with real coefficients, then its conjugate, $2-i \sqrt{5}$, must also be a root.
14. (MH 11-12 2005) How many roots does the polynomial $z^{3}+64$ have?
(a) No roots
(b) One real repeated root
(c) Two real roots, one of which is repeated
(d) Two real roots and one complex root
(e) One real root and a pair of complex conjugate roots

Solution. The polynomial can be factored as $z^{3}+64=z^{3}+4^{3}=(z+4)\left(z^{2}-4 z+16\right)$. So -4 is one real root. Using quadratic formula, it can be checked that the roots of $\left(z^{2}-4 z+16\right)$ are complex conjugate numbers, so the original polynomial has one real root and a pair of complex conjugate roots.
15. (MH 11-12 2000) What is the polynomial of lowest degree with rational coefficients that has $2+\sqrt{3}$ and $1-i$ as some of its roots?
(a) $x^{4}-8 x^{3}+12 x^{2}-10 x+2$
(b) $x^{4}-6 x^{3}+11 x^{2}-10 x+2$
(c) $x^{4}+6 x^{3}+11 x^{2}+10 x+4$
(d) $x^{4}-12 x^{3}+11 x^{2}-10 x+12$
(e) None of the above

Solution. If $1-i$ is a root of a polynomial with real coefficients, then its complex conjugate, $1+i$, is also a root. Similarly, if $2+\sqrt{3}$ is a root of a polynomial with rational coefficients, then its "irrational conjugate" $2-\sqrt{3}$ is also a root. So a polynomial of lowest degree is
$(x-(1-i))(x-(1+i))(x-(2+\sqrt{3}))(x-(2-\sqrt{3}))=(x-1+i)(x-1-i)(x-2-\sqrt{3})(x-2+$ $\sqrt{3})=((x-1)+i)((x-1)-i)((x-2)-\sqrt{3})((x-2)+\sqrt{3})=\left((x-1)^{2}-i^{2}\right)\left((x-2)^{2}-(\sqrt{3})^{2}\right)=$ $\left(\left(x^{2}-2 x+1\right)+1\right)\left(\left(x^{2}-4 x+4\right)-3\right)=\left(x^{2}-2 x+2\right)\left(x^{2}-4 x+1\right)=x^{4}-6 x^{3}+11 x^{2}-10 x+2$.
16. (LF 9-12 1998) The sum of the four distinct complex roots to the polynomial $x^{4}+2 x^{3}+3 x^{2}+4 x+5$ is
(a) 4
(b) $\sqrt{5}$
(c) i
(d) $4 i$
(e) None of these

Solution. Let r_{1}, r_{2}, r_{3}, and r_{4} be the roots. When a product $\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)\left(x-r_{4}\right)$ is expanded, we get
$\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)\left(x-r_{4}\right)=x^{4}-\left(r_{1}+r_{2}+r_{3}+r_{4}\right) x^{3}+A x^{2}+B x+C$, where A, B, and C are polynomials in r_{1}, r_{2}, r_{3}, and r_{4} (in this problem these expressions are irrelevant). So $-\left(r_{1}+r_{2}+r_{3}+\right.$ $\left.r_{4}\right)=2$, thus the sum of the four roots is -2 .

