CSU FRESNO MATH PROBLEM SOLVING
March 21, 2009 Solutions

Topic 1: Equations and inequalities with radicals, exponents, and logs

1. (MH 9-10 2002) Solve: 2* = &
(aA) x=6
(b) x=-6
(c) x=4
(d) none of the above

Solution. The equation can be rewritten as 2* = 2. Therefore x = —6.

2. (MH 11-12 2000) Solve for x: 31°8:(8x=4) — 5
(@) 3
(b)
O
@3

(e) None of the above

Solution. Since 31°8¢ = ¢_ the given equation is equivalent to 8x — 4 = 5. Therefore x = 2.
Solution. g q q 8

3. (MH 9-10 2005) Solve for x: /14 +/24/x=3.
(a) 78
(b) 3844
(c) 15

(d) none of the above

Solution. Squaring both sides, we get
14+24+yx=9
V2+y/x=38

24+ /x=64

Vx =62
x = 3844

4. (MH 11-12 2005) How many real solutions are there to the equation v/x2 + 1 + Vx=1?
(@) 0
(b) 1
(c) 2
(d) 3
(e) 4



Solution. The function /x is defined only for x > 0. But if x > 0, then VX2+1+ Vx>140=1.So
x = 0 is the only solution.

. (MH 11-12 2003) How many roots does the equation v/x2 + 1 + v/x2 +2 = 2 have?
(@ 0
(b) 1
(c) 2
(d) 3
(e) None of the above
Solution. For any real number x, V2 +14+Va2+2>1+v2>2, s0the equation has no roots.

. (MH 9-10 1998) Solve for x: (6*73.6>"1) =1.
@ 3
®) 3
© 7
(d) none of the above
Solution. The equation can be simplified to 6>**2 = 1. Then 3x+2 =0, so x = _TZ
. (MH 9-10 2005) Solve for x: 4°—4*~1 =12,
(a) 2
(b) 3
© 9
(d) none of the above

Solution. The equation can be rewritten as
44571 gl =12

341 =12
4x71:4
x—1=1
x=2

. (MH 11-12 2008) Solve for x: 9*—4.3*t1 427=0
(a) x=3andx=9

(b) x=—landx= -2

(c)x=1landx=2

(d x=-3andx=-9

Solution. The equation can be rewritten as
(32)*—4-3-3*427=0

(3%)2 —12-3+27=0.

Let 3* =y, then we get

V¥ —12y+27=0



(y=3)y—9)=0

This equation has two roots: y =3 and y = 9.

Ify=3,then3* =3 givesx = 1. If y=9, then 3* =9 gives x = 2.
So the original equation has two roots: x = 1 and x = 2.

x+2
9. (LF 9-12 2000) The real solution to the equation e =97t jgx =
(2) 5
(b) =
© 7
@ 3

(e) None of these

Solution. Let’s simplify the left hand side:

92 x+2
(932+4 — 95x+1
92x+4

— 95x+1

93x+4
9—)( — 95)6—0—1

—x=5x+1

6x=-—1
-1

Y=%
10. (MH 11-12 2005) Solve for x: 3(8*) +9(4*) —30(2*) = 0.
(@ 0
(b) 1
(c) 2
(d) —
(e) There is no solution

Solution. The equation can be rewritten as

3((23)’“) +9((2%)%) —30(2%) =0

3((29)) +9((2%)2) ~30(2%) = 0

Let 2* =y, then we have

3749y —30y =0

3y(y*?+3y—10) =0

3y(y-2)(y+5)=0

We get three solutions: y =0,y =2, and y = —5.

The equations 2* = 0 and 2* = —5 have no roots, and 2* = 2 has one root x = 1.

11. (MH 11-12 2003) Given that 9* 497 =34, find 3* + 3.
(@) 3
(b) 6
(©) 9



12.

13.

(d) 27

(e) 81
Solution. Since (3*+37)2 = (3)2 +2-33 ¥+ (37)2 =9 + 249 =34 +2 = 36,
3F+37F=6.
Note: the value —6 is impossible because 3* +37* > 0.

(MH 11-12 1997) If 5319¢5* — 64, then
(@A) x=5

(b) x=125

©x=94

(d) x=4
(e) None of the above
Solution. The equation can be rewritten as
(510g5x)3 — 64
Slogsx —4
x=4.

(MH 11-12 2005) Find the value of n if log, (logs(log, 2")) = 2.
(a) 0
(b) 4
(c) 25
(d) 625
(e) 1,250

Solution. Raising 2 to both sides of this equation and simplifying, we get
nlog, (logs(log, 2")) — 92

logs(log, 2") = 4

5logs(logs2") _ 54

log, 2" = 625

4log4 2" 4625

omn — 4625

omn — (22)625

on — 21,250

n=1,250

14. (MH 11-12 2003) Find the natural n such that log, 3 -log; 4 -log,5-...-log,(n+1) =10

(@) 9
(b) 10
(c) 100
(d) 1023

(e) Does not exist



15.

16.

log.b
log.a’

Solution. Using the change of base formula log, b = the given equation can be rewritten as

log,3-logz4-log,5-... -log,(n+1) =10

I3 In4 S In(tl) 44
{n(2 lln)3 In4 - Inn
n(n+1)

In2 10

In(n+1)=10In2
In(n+1) =1n2'°

n+1=219
n=2"9-1
n=1023

(MH 9-10 1998) Solve for x: log;y(x? 4 3x) +log,o(5x) = 1 +log(2x).
(a) 10
) 1
(c) =5
@) 3
Solution. Using log,a = 1 and log, b + log, ¢ = log,(bc), the given equation can be rewritten as
loglo(x2 +3x) +1og;o(5x) =log;( 10+1og;((2x)
logo((x* 4 3x)(5x)) = log;(10- 2x)
(x* +3x)(5x) = 20x
5x(x% +3x) —20x =0
Sx(x*+3x—4)=0
S5x(x+4)(x—1)=0.
This equation has three roots: x =0, x = —4, and x = 1. The first two values are not roots of the original

equation because the logarithmic function is defined only at positive values. So the only solution is
x=1.

(MH 11-12 2006) Solve for x: log, x+logzx = 3 +1log, 3 +1log; 4
(@)
(b) 3
© 3
(d 6
(e) 12

Solution. Using the base of change formula, the equation can be rewritten as

Inx |, Inx __ In3 | In4

m2 w3 =3+t w2t m3

InxIn3+InxIn2 _ 31n2In3+(In3)2+In41n2
In2In3 - In2In3

InxIn3+InxIn2 = 31n21n3 + (In3)? +1n41n2
Inx(In3+1n2) = 3In21In3 + (In3)? +In(2?)In2

Inx(In3 +1n2) = 3In2In3+ (In3)? +2(In2)?
__ 3In2In3+(1n3)*+2(In2)>

Inx ( 1n§>?—1n2 |
_ (2In2+In3)(In2+In3
Inx = In3+In2

Inx=2In2+1In3
Inx=1In4 +1n3



17.

18.

19.

Inx=1In12
x=12

(MH 11-12 2005) Solve x —xe3*8 =0.

@ x=0
(b) x=1%
(©) x=-3
dx=3

(e) x:0andx:%

Solution. Factor the left hand side:
x(1—e*8) =0.
Either x = 0 or 1 — > 8 = 0. In the second case, e* 8 =1, then 3x —8 =0, s0 x = %.

So we have two solutions: x =0 and x = %.

(MH 11-12 2003) Solve for x: vx> —x—12 < x
(a) x € (—12,4o0)
(b) x € [4,+)
(c) x € (12,+)
(d) No solutions exist
(e) None of the above

Solution. Squaring both sides (and remembering that both x and x*> — x — 12 must be nonnegative) we

get
ox—12<x?
—x—12<0
x> —12.

However, we also need x > 0 and x> —x — 12 > 0. The latter implies (x—4)(x+3) >0, so the solution
set is the intersection of:
[—12,+00), [0,+00), and (—eo, —3] U [4, +o0). The anser is x € [4,+o0).

(MH 11-12 2003) Solve for x: log,>_3729 >3
(@) x € (0,4e0)
(b) x € (—v12,-2)
(c) x € (3,4)
d) xe (2,Vv12)
(e) (b) or (d)
Solution. First we note that x> —3 > 0.
Case I: x> —3 > 1, i.e. x> > 4, i.e. x > 2. Then the given inequality is equivalent to
729 > (x* —3)3
9>x?—3
X <12,
So in this case we get x € (2,v12).



Case II: 0 < x> —3 < 1,1i.e. 3 < x?> < 4. Then the given inequality is equivalent to
729 < (x* —3)3

9<x>-3

x> 12. But the system 3 < x% < 4, x2 > 12 has no solutions.

So the answer is x € (2,1/12).

Topic 2: Complex numbers

Simplifying/evaluating expressions involving complex numbers

. (MH 11-12 2005) Divide 375..

@~}
-

(©) 15+ 3i

(d) 3 1oi

(e) None of the above

Solution. Multiplying the numerator and the denominator by the conjugate of the denominator and
simplifying, we get

3-2i _ (3-2)(2—4i) _ 6-12i—4i-8 _ —2-16i _ _ 1
24i — (244i)(2—4i) — _4+16 20 10

TIEN

i

. (MH 11-12 2005) If i is the imaginary number, what is i%>?
(a) 1

(b) —1

(c) i

(d) —i

(e) None of the above

Solution. Since i2 = —1, we have i% = 3*.i = (2)*.i=(-1)*.i=1-i=1.

. (MH 9-10 2005) Simplify (1 — (—i)318)2.
(a) 4

(b) i

(©) 0

(d) none of the above

Solution. Since i> = —1, we have (1 — (—i)>'®)2 = (1 =182 = (1 - ()2 = (1 - (=12 =
(1—(-1))*=2>=4.

4. (MH 11-12 2005) Determine the real part of (1 +2i)°.

(a) 1
(b) 41



(c) 17
(d) 121
(e) None of the above.

Solution. Using the binomial theorem, we have (1 +2i)> = 1+5-2i+10(2i)% + 10(2i)> + 5(2i)* +
(2i)3 = 1+ 10i — 40 — 80i + 80 +32i = 41 — 38i. The real part is 41.

- (MH 9-10 2002) Find: (4 + @)3

(a) i

(b) —i

(c) —1

(d) 1
Solution 1. (5 +)" = (-3 43 (57 4 3(-4) (0 4 () = p
3\/§i 71+3fz+9 3V3i _ 8 _
Note The above solution 18s the most straighforward, but it takes time to expand the expression. The
solution given below is faster, but requires knowlege of a polar representation.
Solution 2 The polar representation of the number —7 + f’ cos( ) +isin (2?“) is ezTni, and its

cube is (e 31)3 = 2™ — cos(2m) +isin(27m) = 1.

. (MH 11-12 2005) Determine the polar representation of (v/3 —i)*.
(a) 166

(b) 16¢'F

(c) 166

(d) 16

(e) None of the above

Solution. Since /3 —i =2 <§ — %z) =2 (cos (~Z) +isin(~Z)) =2¢7 5,

(V3= (278) = 160 = 160'%.
10

. (MH 11-12 2000) Simplify: < %)

(a) 1

(b) —i

©1

(d) —1

(e) None of the above

S

Solution. Using the polar representation, we have

10
(%%—%i) = (cos (% )+zs1n(4))10 = cos(m“) +isin (“}T’t) = cos (57“) +isin (57“) =cos (%) +

isin(3) =1i.



2-2i
1+i°

8. (MH 11-12 2005) Determine the polar representation of
() V2 (cosZ +isin%)
(b) V2 (cos3E +isin3F)
(c) 2(cos% +isin%)
@ 2 (cos% — isin%)
(e) None of the above
Solution. Let’s divide first, and then convert to the polar representation: 2= = ((2 1;21'3)((11:1'3) = 2’21’;%"’2 =

1
4 — _2j=2(—i)=2(cos % —isinZ).

9. (MH 11-12 2000) Convert to polar notation and multiply: (1 +7)(v/3 —i)
(a) 2v/3(cos60° 4 isin60°)
(b) 2v/2(cos 159 +isin159)
(c) 2v/3(cos30° 4 isin30°)
(d) 2v/2(cos45° + isin45°)
(e) None of the above

Solution. Just following the directions... (1+i)(v/3 —i) = /2 (% + \%z) 2 (@ - %z) =
V2 (cos45° +isin45°) - 2 (cos(—30%) + isin(—30°)) =2v/2 (cos 15° + isin 15°).

10. (LF 9-12 2000) Suppose z = 1 —i. The real part of 1 +z+z>+2>+...+2" is

(@) 0

(b) —1

(c) —1-2%
(d) —2%v2

(e) None of these

Solution. Using the formula for the sum of a geometric series, we have
2.3 99 _ 1'% _ 1-(1-)"% _ 1-((1-i)*)° _ 1-(=2° _ 1-((2)*)* _ (1-(=4)7)i _
bzt +o+ .+ =T =0y = i =73 = I e

—(1 — (—4)%)i. This number has real part 0 because 1 — (—4)?’ is real.

11. (MH 11-12 2005) Let z = x + iy. Determine the real part of z* /Z.

Bey?
(a) Py

3x2y+y3
(b) 283
3aly—y?
() 212

X2 +3xy?
(@) 23

¥ —3xy?
&) 23




12.

13.

Solution. Let’s rewrite the expression in terms of x and y:

X3 —3xy?
x24y?

2 tiy)? O (eiy)? P3ai-3n?—ydi (P =3n?)+(3xy—yY)i
= — —

. The real part is

x—iy (x—iy) (x+iy) x2+y? x24y?

(LF 9-12 2002) Suppose w and z are two complex numbers that satisfy wz = 1 and w+z = —1. Then
w6 4 716 —

(a) 1

(b) 1

(c) —1

(d) —i

(e) None of these

Solution 1. Solving w+ z = —1 for w and substituting into the other equation, we get:
w=-—-1-—z2

(—-1—2)z=1

—z—72=1

Z4+z+1=0

 _1+V/1-4
= 2

— 14 V3
7= ij 5L

Ifz:—%+‘/7§i,thenw:—%—\/7§i.

Note: if z= —% — \/Tgi, then w = —% + \/Tgi, so z and w are switched and the value of w!® + 71 is the
same; so let’s consider the case z = —% + gi and w = —% — ‘/Tgi.

The polar representations are:
) 2 ; .. _om;
7 =cos (%’t) +isin (%’t) —e3iand w = cos (—27“) +isin (—ZT“) —e 3t
o\ 16 o\ 16 31 301 om o
Then w'® 4716 = (e’Tn’) + (eTn’> —e iqeri=e 34T i=wrz=—1.
Solution 2. The numbers w and z are roots of the equation x2+x+1=0, therefore they are also roots of
x*—1=0. Thusw® =land > = 1. Then w!'®+-z10 =Wl w15 7= (W3 w4+ () z=w+z=—1.

Roots of polynomials

Theorem. If a+ bi is a root of a polynomial with real coefficients, then a — bi is also a root of this
polynomial.
Corollary. A polynomial with real coefficients has an even number of nonreal complex roots.

(MH 11-12 1997) If a polynomial with real coefficients has 2 4 iv/5 and 6 as roots, then another root
of the polynomial is:

() —2+iV5

(b) 6i

© —2-iV5

(d) There need not be another root.

(e) There is another root but it is none of the above.

10



14.

15.

16.

Solution. If 2 +iv/5 is a root of a polynomial with real coefficients, then its conjugate, 2 — iv/5, must

also be a root.

(MH 11-12 2005) How many roots does the polynomial z> 4+ 64 have?
(a) No roots
(b) One real repeated root
(c) Two real roots, one of which is repeated
(d) Two real roots and one complex root
(e) One real root and a pair of complex conjugate roots

Solution. The polynomial can be factored as 7> 4+ 64 = 7> +4° = (z+4)(z> —4z+16). So —4 is one
real root. Using quadratic formula, it can be checked that the roots of (z*> — 4z + 16) are complex
conjugate numbers, so the original polynomial has one real root and a pair of complex conjugate roots.

(MH 11-12 2000) What is the polynomial of lowest degree with rational coefficients that has 2 + /3
and 1 — i as some of its roots?

(@) x* —8x3 + 12x2 — 10x +2
(b) x* —6x> +11x% — 10x+2
() x*+6x3+11x2+ 10x + 4
(d) x* =123 +11x%> — 10x + 12
(e) None of the above

Solution. If 1 —1i is a root of a polynomial with real coefficients, then its complex conjugate, 141, is
also a root. Similarly, if 2+ /3 is a root of a polynomial with rational coefficients, then its “irrational
conjugate” 2 — /3 is also a root. So a polynomial of lowest degree is

(= (=)= +))x =2+ V)= 2-V3)) = (x—1+)x—1-)x-2-V3)(x-2+
V3) = (= D+ )((r— 1) = )((x—2) = V3)((x—2) +v3) = ((x— 1)2 = 2)((x—2)* — (V3)) =
(> =24+ 1)+ D (x> —4x+4) —3) = (x? —2x +2) (x> —dx+ 1) = x* — 6> + 11x% — 10x + 2.

(LF 9-12 1998) The sum of the four distinct complex roots to the polynomial x* + 2x> 4+ 3x% +4x+ 5
is

(a) 4

(b) V5

(c) i

(d) 4i

(e) None of these

Solution. Let ry, 12, r3, and r4 be the roots. When a product (x —r1)(x—rp)(x—r3)(x—ry4) is expanded,
we get

(x—r1)(x—r)(x —r3)(x—r4) = x* — (r; + 1y +r3 +r4)x> +Ax> + Bx + C, where A, B, and C are
polynomials in r, r2, r3, and r4 (in this problem these expressions are irrelevant). So —(r; +r, +r3 +
r4) = 2, thus the sum of the four roots is —2.

11



