CSU FRESNO MATH PROBLEM SOLVING

March 21, 2009

Solutions

Topic 1: Equations and inequalities with radicals, exponents, and logs

- 1. (MH 9-10 2002) Solve: $2^x = \frac{1}{64}$
 - (a) x = 6
 - (b) x = -6
 - (c) x = 4
 - (d) none of the above

<u>Solution</u>. The equation can be rewritten as $2^x = 2^{-6}$. Therefore x = -6.

2. (MH 11-12 2000) Solve for x: $3^{\log_3(8x-4)} = 5$

- (a) $\frac{9}{8}$
- (b) $\frac{9}{4}$
- (c) $\frac{8}{5}$
- (d) $\frac{8}{0}$
- (e) None of the above

<u>Solution</u>. Since $3^{\log_3 a} = a$, the given equation is equivalent to 8x - 4 = 5. Therefore $x = \frac{9}{8}$.

3. (MH 9-10 2005) Solve for *x*: $\sqrt{1 + \sqrt{2 + \sqrt{x}}} = 3$.

- (a) 78
- (b) 3844
- (c) 15
- (d) none of the above

Solution. Squaring both sides, we get $1 + \sqrt{2} + \sqrt{x} = 9$ $\sqrt{2} + \sqrt{x} = 8$ $2 + \sqrt{x} = 64$ $\sqrt{x} = 62$ x = 3844

4. (MH 11-12 2005) How many real solutions are there to the equation $\sqrt{x^2 + 1} + \sqrt{x} = 1$?

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) 4

Solution. The function \sqrt{x} is defined only for $x \ge 0$. But if x > 0, then $\sqrt{x^2 + 1} + \sqrt{x} > 1 + 0 = 1$. So x = 0 is the only solution.

5. (MH 11-12 2003) How many roots does the equation $\sqrt{x^2+1} + \sqrt{x^2+2} = 2$ have?

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) None of the above

<u>Solution</u>. For any real number x, $\sqrt{x^2+1} + \sqrt{x^2+2} \ge 1 + \sqrt{2} > 2$, so the equation has no roots.

6. (MH 9-10 1998) Solve for *x*: $(6^{x+3} \cdot 6^{2x-1}) = 1$.

- (a) $\frac{2}{3}$
- (b) $\frac{3}{2}$
- (c) $\frac{-2}{3}$
- (d) none of the above

<u>Solution</u>. The equation can be simplified to $6^{3x+2} = 1$. Then 3x + 2 = 0, so $x = \frac{-2}{3}$.

- 7. (MH 9-10 2005) Solve for *x*: $4^x 4^{x-1} = 12$.
 - (a) 2
 - (b) 3
 - (c) 9
 - (d) none of the above

Solution. The equation can be rewritten as $4 \cdot 4^{x-1} - 4^{x-1} = 12$ $3 \cdot 4^{x-1} = 12$ $4^{x-1} = 4$ x - 1 = 1x = 2

8. (MH 11-12 2008) Solve for *x*: $9^x - 4 \cdot 3^{x+1} + 27 = 0$

- (a) x = 3 and x = 9
- (b) x = -1 and x = -2
- (c) x = 1 and x = 2
- (d) x = -3 and x = -9

Solution. The equation can be rewritten as $(3^2)^x - 4 \cdot 3 \cdot 3^x + 27 = 0$ $(3^x)^2 - 12 \cdot 3^x + 27 = 0$. Let $3^x = y$, then we get $y^2 - 12y + 27 = 0$ (y-3)(y-9) = 0This equation has two roots: y = 3 and y = 9. If y = 3, then $3^x = 3$ gives x = 1. If y = 9, then $3^x = 9$ gives x = 2. So the original equation has two roots: x = 1 and x = 2.

- 9. (LF 9-12 2000) The real solution to the equation $\frac{81^{x+2}}{9^{3x+4}} = 9^{5x+1}$ is x =
 - (a) $\frac{-1}{3}$ (b) $\frac{-2}{3}$
 - (c) $\frac{-3}{4}$
 - (d) $\frac{-1}{6}$
 - (e) None of these

Solution. Let's simplify the left hand side:

$$\frac{(9^2)^{x+2}}{9^{3x+4}} = 9^{5x+1}$$
$$\frac{9^{2x+4}}{9^{3x+4}} = 9^{5x+1}$$
$$9^{-x} = 9^{5x+1}$$
$$-x = 5x+1$$
$$6x = -1$$
$$x = \frac{-1}{6}$$

10. (MH 11-12 2005) Solve for x: $3(8^x) + 9(4^x) - 30(2^x) = 0$.

- (a) 0
- (b) 1
- (c) 2
- (d) -5
- (e) There is no solution

Solution. The equation can be rewritten as $3((2^3)^x) + 9((2^2)^x) - 30(2^x) = 0$ $3((2^x)^3) + 9((2^x)^2) - 30(2^x) = 0$ Let $2^x = y$, then we have $3y^3 + 9y^2 - 30y = 0$ $3y(y^2 + 3y - 10) = 0$ 3y(y-2)(y+5) = 0We get three solutions: y = 0, y = 2, and y = -5. The equations $2^x = 0$ and $2^x = -5$ have no roots, and $2^x = 2$ has one root x = 1.

11. (MH 11-12 2003) Given that $9^x + 9^{-x} = 34$, find $3^x + 3^{-x}$.

- (a) 3
- (b) 6
- (c) 9

(d) 27

(e) 81

Solution. Since $(3^x + 3^{-x})^2 = (3^x)^2 + 2 \cdot 3^x 3^{-x} + (3^{-x})^2 = 9^x + 2 + 9^{-x} = 34 + 2 = 36$, $3^x + 3^{-x} = 6$. Note: the value -6 is impossible because $3^x + 3^{-x} > 0$.

12. (MH 11-12 1997) If $5^{3\log_5 x} = 64$, then

(a) x = 5(b) x = 125(c) $x = \frac{64}{3}$ (d) x = 4(e) None of the above Solution. The equation of

Solution. The equation can be rewritten as $(5^{\log_5 x})^3 = 64$ $5^{\log_5 x} = 4$ x = 4.

13. (MH 11-12 2005) Find the value of *n* if $\log_2(\log_5(\log_4 2^n)) = 2$.

- (a) 0
- (b) 4
- (c) 25
- (d) 625
- (e) 1,250

Solution. Raising 2 to both sides of this equation and simplifying, we get $2^{\log_2(\log_5(\log_4 2^n))} = 2^2$

 $log_{5}(log_{4}2^{n}) = 4$ $5^{log_{5}(log_{4}2^{n})} = 5^{4}$ $log_{4}2^{n} = 625$ $4^{log_{4}2^{n}} = 4^{625}$ $2^{n} = 4^{625}$ $2^{n} = (2^{2})^{625}$ $2^{n} = 2^{1,250}$ n = 1,250

14. (MH 11-12 2003) Find the natural *n* such that $\log_2 3 \cdot \log_3 4 \cdot \log_4 5 \cdot \ldots \cdot \log_n (n+1) = 10$

- (a) 9
- (b) 10
- (c) 100
- (d) 1023
- (e) Does not exist

Solution. Using the change of base formula $\log_a b = \frac{\log_c b}{\log_c a}$, the given equation can be rewritten as $\log_2 3 \cdot \log_3 4 \cdot \log_4 5 \cdot \ldots \cdot \log_n (n+1) = 10$ $\frac{\ln 3}{\ln 2} \cdot \frac{\ln 4}{\ln 3} \cdot \frac{\ln 5}{\ln 4} \cdot \ldots \cdot \frac{\ln(n+1)}{\ln n} = 10$ $\frac{\ln(n+1)}{\ln 2} = 10$ $\ln(n+1) = \ln 2^{10}$ $n+1 = 2^{10}$ $n = 2^{10} - 1$ n = 1023

15. (MH 9-10 1998) Solve for x: $\log_{10}(x^2 + 3x) + \log_{10}(5x) = 1 + \log_{10}(2x)$.

- (a) 10
- (b) 1
- (c) −5
- (d) $\frac{1}{5}$

Solution. Using $\log_a a = 1$ and $\log_a b + \log_a c = \log_a(bc)$, the given equation can be rewritten as $\log_{10}(x^2 + 3x) + \log_{10}(5x) = \log_{10} 10 + \log_{10}(2x)$ $\log_{10}((x^2 + 3x)(5x)) = \log_{10}(10 \cdot 2x)$ $(x^2 + 3x)(5x) = 20x$ $5x(x^2 + 3x) - 20x = 0$ $5x(x^2 + 3x - 4) = 0$ 5x(x + 4)(x - 1) = 0. This equation has three roots: x = 0, x = -4, and x = 1. The first two values are not roots of the original

equation has three roots: x = 0, x = -4, and x = 1. The first two values are not roots of the original equation because the logarithmic function is defined only at positive values. So the only solution is x = 1.

16. (MH 11-12 2006) Solve for x: $\log_2 x + \log_3 x = 3 + \log_2 3 + \log_3 4$

- (a) $\frac{1}{6}$
- (b) $\frac{2}{3}$
- (c) $\frac{3}{2}$
- (d) 6
- (0) 0
- (e) 12

Solution. Using the base of change formula, the equation can be rewritten as

 $\frac{\ln x}{\ln 2} + \frac{\ln x}{\ln 3} = 3 + \frac{\ln 3}{\ln 2} + \frac{\ln 4}{\ln 3}$ $\frac{\ln x \ln 3 + \ln x \ln 2}{\ln 2 \ln 3} = \frac{3 \ln 2 \ln 3 + (\ln 3)^2 + \ln 4 \ln 2}{\ln 2 \ln 3}$ $\ln x \ln 3 + \ln x \ln 2 = 3 \ln 2 \ln 3 + (\ln 3)^2 + \ln 4 \ln 2$ $\ln x (\ln 3 + \ln 2) = 3 \ln 2 \ln 3 + (\ln 3)^2 + \ln (2^2) \ln 2$ $\ln x (\ln 3 + \ln 2) = 3 \ln 2 \ln 3 + (\ln 3)^2 + 2(\ln 2)^2$ $\ln x = \frac{3 \ln 2 \ln 3 + (\ln 3)^2 + 2(\ln 2)^2}{\ln 3 + \ln 2}$ $\ln x = \frac{(2 \ln 2 + \ln 3)(\ln 2 + \ln 3)}{\ln 3 + \ln 2}$ $\ln x = 2 \ln 2 + \ln 3$ $\ln x = \ln 4 + \ln 3$

 $\ln x = \ln 12$ x = 12

- 17. (MH 11-12 2005) Solve $x xe^{3x-8} = 0$.
 - (a) x = 0(b) $x = \frac{8}{3}$ (c) $x = -\frac{8}{3}$ (d) $x = \frac{3}{8}$ (e) x = 0 and $x = \frac{8}{3}$

Solution. Factor the left hand side:

 $\overline{x(1-e^{3x}-8)}=0.$

Either x = 0 or $1 - e^{3x-8} = 0$. In the second case, $e^{3x-8} = 1$, then 3x - 8 = 0, so $x = \frac{8}{3}$. So we have two solutions: x = 0 and $x = \frac{8}{3}$.

18. (MH 11-12 2003) Solve for *x*: $\sqrt{x^2 - x - 12} < x$

- (a) $x \in (-12, +\infty)$
- (b) $x \in [4, +\infty)$
- (c) $x \in (12, +\infty)$
- (d) No solutions exist
- (e) None of the above

<u>Solution</u>. Squaring both sides (and remembering that both x and $x^2 - x - 12$ must be nonnegative) we get

However, we also need $x \ge 0$ and $x^2 - x - 12 \ge 0$. The latter implies $(x-4)(x+3) \ge 0$, so the solution set is the intersection of:

 $[-12, +\infty), [0, +\infty), \text{ and } (-\infty, -3] \cup [4, +\infty).$ The anser is $x \in [4, +\infty)$.

19. (MH 11-12 2003) Solve for *x*: $\log_{x^2-3} 729 > 3$

(a)
$$x \in (0, +\infty)$$

(b) $x \in (-\sqrt{12}, -2)$
(c) $x \in (3, +\infty)$
(d) $x \in (2, \sqrt{12})$
(e) (b) or (d)
Solution. First we note that $x^2 - 3 > 0$.
Case I: $x^2 - 3 > 1$, i.e. $x^2 > 4$, i.e. $x > 2$. Then the given inequality is equivalent to
 $729 > (x^2 - 3)^3$
 $9 > x^2 - 3$

$$x^2 < 12.$$

So in this case we get $x \in (2, \sqrt{12})$.

Case II: $0 < x^2 - 3 < 1$, i.e. $3 < x^2 < 4$. Then the given inequality is equivalent to $729 < (x^2 - 3)^3$ $9 < x^2 - 3$ $x^2 > 12$. But the system $3 < x^2 < 4$, $x^2 > 12$ has no solutions. So the answer is $x \in (2, \sqrt{12})$.

Topic 2: Complex numbers

Simplifying/evaluating expressions involving complex numbers

- 1. (MH 11-12 2005) Divide $\frac{3-2i}{2+4i}$.
 - (a) $-\frac{1}{10} \frac{2}{5}i$
 - (b) $-\frac{1}{10} \frac{4}{5}i$
 - (c) $\frac{7}{10} + \frac{2}{5}i$
 - (d) $\frac{4}{5} \frac{1}{10}i$
 - (e) None of the above

<u>Solution</u>. Multiplying the numerator and the denominator by the conjugate of the denominator and simplifying, we get

simplifying, we get $\frac{3-2i}{2+4i} = \frac{(3-2i)(2-4i)}{(2+4i)(2-4i)} = \frac{6-12i-4i-8}{4+16} = \frac{-2-16i}{20} = -\frac{1}{10} - \frac{4}{5}i.$

- 2. (MH 11-12 2005) If *i* is the imaginary number, what is i^{85} ?
 - (a) 1
 - (b) −1
 - (c) *i*
 - (d) -*i*
 - (e) None of the above

Solution. Since $i^2 = -1$, we have $i^{85} = i^{84} \cdot i = (i^2)^{42} \cdot i = (-1)^{42} \cdot i = 1 \cdot i = i$.

- 3. (MH 9-10 2005) Simplify $(1 (-i)^{318})^2$.
 - (a) 4
 - (b) *i*
 - (c) 0
 - (d) none of the above

Solution. Since $i^2 = -1$, we have $(1 - (-i)^{318})^2 = (1 - i^{318})^2 = (1 - (i^2)^{159})^2 = (1 - (-1)^{159}$

- 4. (MH 11-12 2005) Determine the real part of $(1+2i)^5$.
 - (a) 1
 - (b) 41

(c) 17

(d) 121

(e) None of the above.

Solution. Using the binomial theorem, we have $(1+2i)^5 = 1+5 \cdot 2i + 10(2i)^2 + 10(2i)^3 + 5(2i)^4 + (2i)^5 = 1 + 10i - 40 - 80i + 80 + 32i = 41 - 38i$. The real part is 41.

5. (MH 9-10 2002) Find: $\left(-\frac{1}{2} + \frac{\sqrt{3}i}{2}\right)^3$

- (a) *i*
- (b) -i
- (c) -1
- (d) 1

 $\frac{\text{Solution 1.}}{\frac{3\sqrt{3}i}{8} = \frac{-1+3\sqrt{3}i+9-3\sqrt{3}i}{8} = \frac{8}{8} = 1.}$

Note. The above solution is the most straighforward, but it takes time to expand the expression. The solution given below is faster, but requires knowlege of a polar representation.

Solution 2. The polar representation of the number $-\frac{1}{2} + \frac{\sqrt{3}i}{2} = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)$ is $e^{\frac{2\pi}{3}i}$, and its cube is $(e^{\frac{2\pi}{3}i})^3 = e^{2\pi i} = \cos(2\pi) + i\sin(2\pi) = 1$.

- 6. (MH 11-12 2005) Determine the polar representation of $(\sqrt{3}-i)^4$.
 - (a) $16e^{i\frac{2\pi}{3}}$
 - (b) $16e^{i\frac{4\pi}{3}}$
 - (c) $16e^{i\frac{5\pi}{3}}$
 - (d) 16
 - (e) None of the above

<u>Solution.</u> Since $\sqrt{3} - i = 2\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right) = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right) = 2e^{-\frac{\pi}{6}i},$ $(\sqrt{3} - i)^4 = \left(2e^{-\frac{\pi}{6}i}\right)^4 = 16e^{-\frac{2\pi}{3}i} = 16e^{i\frac{4\pi}{3}}.$

- 7. (MH 11-12 2000) Simplify: $\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)^{10}$
 - (a) *i*
 - (b) -i
 - (c) 1
 - (d) −1
 - (e) None of the above

Solution. Using the polar representation, we have

 $\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)^{10} = \left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)^{10} = \cos\left(\frac{10\pi}{4}\right) + i\sin\left(\frac{10\pi}{4}\right) = \cos\left(\frac{5\pi}{2}\right) + i\sin\left(\frac{5\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right) = i.$

8. (MH 11-12 2005) Determine the polar representation of $\frac{2-2i}{1+i}$.

- (a) $\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$
- (b) $\sqrt{2}\left(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right)$
- (c) $2\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$
- (d) $2\left(\cos\frac{\pi}{2} i\sin\frac{\pi}{2}\right)$
- (e) None of the above

Solution. Let's divide first, and then convert to the polar representation: $\frac{2-2i}{1+i} = \frac{(2-2i)(1-i)}{(1+i)(1-i)} = \frac{2-2i-2i-2}{1+1} = \frac{-4i}{2} = -2i = 2(-i) = 2\left(\cos\frac{\pi}{2} - i\sin\frac{\pi}{2}\right).$

9. (MH 11-12 2000) Convert to polar notation and multiply: $(1+i)(\sqrt{3}-i)$

- (a) $2\sqrt{3}(\cos 60^0 + i \sin 60^0)$
- (b) $2\sqrt{2}(\cos 15^0 + i \sin 15^0)$
- (c) $2\sqrt{3}(\cos 30^0 + i \sin 30^0)$
- (d) $2\sqrt{2}(\cos 45^0 + i \sin 45^0)$
- (e) None of the above

<u>Solution</u>. Just following the directions... $(1+i)(\sqrt{3}-i) = \sqrt{2}\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right) \cdot 2\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right) =$

 $\sqrt{2} \left(\cos 45^0 + i \sin 45^0 \right) \cdot 2 \left(\cos (-30^0) + i \sin (-30^0) \right) = 2\sqrt{2} \left(\cos 15^0 + i \sin 15^0 \right).$

10. (LF 9-12 2000) Suppose z = 1 - i. The real part of $1 + z + z^2 + z^3 + ... + z^{99}$ is

- (a) 0
- (b) −1
- (c) $-1 2^{50}$
- (d) $-2^{49}\sqrt{2}$
- (e) None of these

Solution. Using the formula for the sum of a geometric series, we have $1+z+z^2+z^3+\ldots+z^{99} = \frac{1-z^{100}}{1-z} = \frac{1-(1-i)^{100}}{1-(1-i)} = \frac{1-((1-i)^2)^{50}}{i} = \frac{1-(-2i)^{50}}{i} = \frac{1-((2i)^2)^{25}}{i} = \frac{(1-(-4)^{25})i}{-1} = -(1-(-4)^{25})i$. This number has real part 0 because $1-(-4)^{25}$ is real.

11. (MH 11-12 2005) Let z = x + iy. Determine the real part of z^2/\overline{z} .

- (a) $\frac{x^2 y^2}{x^2 + y^2}$ (b) $\frac{3x^2y + y^3}{x^2 + y^2}$
- (c) $\frac{3x^2y-y^3}{x^2+y^2}$
- (d) $\frac{x^3 + 3xy^2}{x^2 + y^2}$
- (e) $\frac{x^3 3xy^2}{x^2 + y^2}$

Solution. Let's rewrite the expression in terms of x and y: $\frac{z^2}{\overline{z}} = \frac{(x+iy)^2}{x-iy} = \frac{(x+iy)^3}{(x-iy)(x+iy)} = \frac{x^3 + 3x^2yi - 3xy^2 - y^3i}{x^2 + y^2} = \frac{(x^3 - 3xy^2) + (3x^2y - y^3)i}{x^2 + y^2}.$ The real part is $\frac{x^3 - 3xy^2}{x^2 + y^2}$.

- 12. (LF 9-12 2002) Suppose w and z are two complex numbers that satisfy wz = 1 and w + z = -1. Then $w^{16} + z^{16} =$
 - (a) *i*
 - (b) 1
 - (c) −1
 - (d) –*i*
 - (e) None of these

Solution 1. Solving w + z = -1 for w and substituting into the other equation, we get:

$$\begin{split} & w = -1 - z \\ (-1 - z)z = 1 \\ -z - z^2 = 1 \\ z^2 + z + 1 = 0 \\ z = -\frac{1 \pm \sqrt{1 - 4}}{2} \\ z = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i, \\ & \text{If } z = -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \text{ then } w = -\frac{1}{2} - \frac{\sqrt{3}}{2}i. \\ & \text{Note: if } z = -\frac{1}{2} - \frac{\sqrt{3}}{2}i, \text{ then } w = -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \text{ so } z \text{ and } w \text{ are switched and the value of } w^{16} + z^{16} \text{ is the same; so let's consider the case } z = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \text{ and } w = -\frac{1}{2} - \frac{\sqrt{3}}{2}i. \\ & \text{The polar representations are:} \\ z = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) = e^{\frac{2\pi}{3}i} \text{ and } w = \cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right) = e^{-\frac{2\pi}{3}i}. \\ & \text{Then } w^{16} + z^{16} = \left(e^{-\frac{2\pi}{3}i}\right)^{16} + \left(e^{\frac{2\pi}{3}i}\right)^{16} = e^{-\frac{32\pi}{3}i} + e^{\frac{2\pi}{3}i} = e^{-\frac{2\pi}{3}i} + e^{\frac{2\pi}{3}i} = w + z = -1. \\ & \frac{\text{Solution } 2. \text{ The numbers } w \text{ and } z \text{ are roots of the equation } x^2 + x + 1 = 0, \text{ therefore they are also roots of } \\ & x^3 - 1 = 0. \text{ Thus } w^3 = 1 \text{ and } z^3 = 1. \text{ Then } w^{16} + z^{16} = w^{15} \cdot w + z^{15} \cdot z = (w^3)^5 \cdot w + (z^3)^5 \cdot z = w + z = -1. \end{split}$$

Roots of polynomials

Theorem. If a + bi is a root of a polynomial with real coefficients, then a - bi is also a root of this polynomial.

Corollary. A polynomial with real coefficients has an even number of nonreal complex roots.

- 13. (MH 11-12 1997) If a polynomial with real coefficients has $2 + i\sqrt{5}$ and 6 as roots, then another root of the polynomial is:
 - (a) $-2 + i\sqrt{5}$
 - (b) 6*i*

(c)
$$-2 - i\sqrt{5}$$

- (d) There need not be another root.
- (e) There is another root but it is none of the above.

Solution. If $2 + i\sqrt{5}$ is a root of a polynomial with real coefficients, then its conjugate, $2 - i\sqrt{5}$, must also be a root.

- 14. (MH 11-12 2005) How many roots does the polynomial $z^3 + 64$ have?
 - (a) No roots
 - (b) One real repeated root
 - (c) Two real roots, one of which is repeated
 - (d) Two real roots and one complex root
 - (e) One real root and a pair of complex conjugate roots

Solution. The polynomial can be factored as $z^3 + 64 = z^3 + 4^3 = (z+4)(z^2 - 4z + 16)$. So -4 is one real root. Using quadratic formula, it can be checked that the roots of $(z^2 - 4z + 16)$ are complex conjugate numbers, so the original polynomial has one real root and a pair of complex conjugate roots.

- 15. (MH 11-12 2000) What is the polynomial of lowest degree with rational coefficients that has $2 + \sqrt{3}$ and 1 i as some of its roots?
 - (a) $x^4 8x^3 + 12x^2 10x + 2$
 - (b) $x^4 6x^3 + 11x^2 10x + 2$
 - (c) $x^4 + 6x^3 + 11x^2 + 10x + 4$
 - (d) $x^4 12x^3 + 11x^2 10x + 12$
 - (e) None of the above

Solution. If 1 - i is a root of a polynomial with real coefficients, then its complex conjugate, 1 + i, is also a root. Similarly, if $2 + \sqrt{3}$ is a root of a polynomial with rational coefficients, then its "irrational conjugate" $2 - \sqrt{3}$ is also a root. So a polynomial of lowest degree is

 $\begin{array}{l} (x-(1-i))(x-(1+i))(x-(2+\sqrt{3}))(x-(2-\sqrt{3})) = (x-1+i)(x-1-i)(x-2-\sqrt{3})(x-2+\sqrt{3}) \\ \sqrt{3} = ((x-1)+i)((x-1)-i)((x-2)-\sqrt{3})((x-2)+\sqrt{3}) = ((x-1)^2-i^2)((x-2)^2-(\sqrt{3})^2) \\ ((x^2-2x+1)+1)((x^2-4x+4)-3) = (x^2-2x+2)(x^2-4x+1) = x^4-6x^3+11x^2-10x+2. \end{array}$

- 16. (LF 9-12 1998) The sum of the four distinct complex roots to the polynomial $x^4 + 2x^3 + 3x^2 + 4x + 5$ is
 - (a) 4
 - (b) $\sqrt{5}$
 - (c) *i*
 - (d) 4*i*
 - (e) None of these

Solution. Let r_1 , r_2 , r_3 , and r_4 be the roots. When a product $(x - r_1)(x - r_2)(x - r_3)(x - r_4)$ is expanded, we get

 $(x-r_1)(x-r_2)(x-r_3)(x-r_4) = x^4 - (r_1+r_2+r_3+r_4)x^3 + Ax^2 + Bx + C$, where A, B, and C are polynomials in r_1 , r_2 , r_3 , and r_4 (in this problem these expressions are irrelevant). So $-(r_1+r_2+r_3+r_4) = 2$, thus the sum of the four roots is -2.