Groups of derangements of the n-cube.

Oscar Vega
(joint work with L. Cusick)
California State University, Fresno.

AMS Spring Central Sectional Meeting. Iowa City. March 20th, 2011.
The n-cube.

Definition

The n-dimensional cube Q_n, AKA n-cube, is the graph with

(i) vertices $y = (y_1, y_2, \ldots, y_n)$, where $y_i = \pm 1$ for all $i = 1, 2, \ldots, n$,

(ii) edges joining any two vertices that differ in exactly one component.

Example: Q_3
Definition

A k-face F of Q_n is a k-subcube whose vertices have $n - k$ of the coordinates predetermined. That is,

$$V(F) = \{ y = (y_1, \ldots, y_n) \in Q_n; \; y_{i_1} = a_{i_1}, \ldots, y_{i_{n-k}} = a_{i_{n-k}} \},$$

where, of course, each $a_{ij} = \pm 1$.

The edges of F are inherited from the edges of Q_n.

Examples:

- **1-face of Q_3**
 - $(1,1,1)$
 - $(-1,1,1)$
 - $(1,-1,1)$
 - $(-1,-1,1)$
 - $(*,1,-1)$

- **2-face of Q_3**
 - $(1,1,1)$
 - $(-1,1,1)$
 - $(1,-1,1)$
 - $(-1,-1,1)$
 - $(*,1,*)$
Automorphisms of Q_n.

- The automorphism group of the cube is $B_n = S_n \wr \mathbb{Z}_2$, where $\mathbb{Z}_2 = \{\pm 1\}$. This group is sometimes called the hyperoctahedral group.

- We denote the elements in B_n by $(\sigma; x)$, where $\sigma \in S_n$ and \(x = (x_1, x_2, \cdots, x_n) \in (\mathbb{Z}_2)^n\). The multiplication is given by

\[
(\sigma; x)(\tau; y) = (\sigma \tau; x^\tau y)
\]

where $x^\tau = (x_{\tau(1)}, x_{\tau(2)}, \cdots, x_{\tau(n)})$, and $x^\tau y$ is computed by component to component multiplication.

- The action of B_n on Q_n is given by $(\sigma, x)y = xy^\sigma$.
Derangements of Q_n.

Definition

1. A derangement of the k-faces of Q_n is an element of B_n that acts freely on the set of all k-faces of Q_n.

2. A group G will be called a derangement of the k-faces of Q_n if it is isomorphic to a subgroup H of B_n such that every non-identity element in H is a derangement of the k-faces of Q_n. In such a case we write

$$G \vdash_k B_n.$$

Theorem (Cusick)

If G is a finite group and $G \vdash_k B_n$ for some $n \geq 1$, then $\gcd(k, |G|) = 2^s$ for some $s \geq 0$.

The Problem.

Question
Let G be a finite group and k be such that $\gcd(k, |G|) = 2^s$ for some $s \geq 0$. Is there an n such that $G \models kB_n$?

The first author (Cusick) proved that the answer to this question is yes if:

- $|G|$ is odd, or
- $|G| = 2^s$, for some s, or
- $G \cong \mathbb{Z}_m$, for some m.

Remark
Most of these results are proved using the Chen-Stanley criterion and outer products.
The Chen-Stanley Criterion & Outer Products

Definition

If \(\sigma = (i_1 i_2 \ldots i_s) \) is a cycle in \(S_n \) and \(x \in (\mathbb{Z}_2)^n \), then \(x_\sigma = x_{i_1}x_{i_2} \cdots x_{i_s} \).

Theorem (Chen-Stanley, 1993)

A symmetry \((\pi; x) \in B_n\) is a derangement of the set of \(k \)-faces in \(Q_n \) if, and only if, for every \(k \)-element \(\pi \)-invariant subset \(I \subset \{1, \ldots, n\} \), \(x_\sigma = -1 \) for some cycle \(\sigma \) in \(\pi \) disjoint from \(I \).

Definition

The outer product \(\times : B_n \times B_m \to B_{n+m} \) is defined by \((\pi; x) \times (\theta; y) = (\pi \times \theta; x, y)\), where \(\pi \times \theta \) is the permutation given by

\[
\pi \times \theta = \begin{pmatrix}
1 & 2 & \cdots & n & n+1 & \cdots & n+m \\
\pi(1) & \pi(2) & \cdots & \pi(n) & n+\theta(1) & \cdots & n+\theta(m)
\end{pmatrix}
\]
Main Theorem.

Our main theorem is that the answer to our question is always yes. That is

Theorem (C-V)

Let G be a finite group and k be such that $\gcd(k, |G|) = 2^s$ for some $s \geq 0$. Then, there is an n such that G is a derangement of the k-faces of Q_n.

The proof is (almost) constructive:

(i) Get a representation ρ of the 2-Sylow of G into some B_n that is ‘good’
(ii) Get the induced representation of ρ for G. Prove it is ‘good’.
(iii) Use outer products to get a representation of G into some B_m that satisfies the Chen-Stanley criterion.
Thank you!

Any questions?