1. Given the reserve required ratio of 5%, the Fed purchases $\$ 250$ in government securities from a dealer who deposits her check in Bank1. Assuming that banks are "loaned up" and that there is no cash leakage, we can say that:
a. Bank 1's total reserve will rise by \qquad $\$ 250$ \qquad .
b. Bank 1 will lend out \qquad $\$ 237.5$.
c. The money supply in the banking system as whole will \qquad rise__ by __ $\$ 5000$.
d. The total reserve of the baking system will rise by \qquad \$250
e. The overall lending in the system will \qquad by \qquad
2. Consider the following exchanges between individuals A, B and C :

a. The amount of money, M, needed to consummate these transactions is \qquad .
b. The average price, P , in these exchanges is \qquad
c. The average velocity of circulation of money, V , is \qquad $[(\$ 1)(3)+(\$ 1)(2)+(\$ 3)(1)] / 5=8 / 5=1.6$.
3. The demand for money, Md , is given by

$$
\mathrm{Md}=220-10 \mathrm{i}
$$

where i is the rate of interest in percentage points.
The money supply, Ms, is set at

$$
\mathrm{Ms}=\$ 120
$$

a) The equilibrium rate of interest is \qquad 10 \qquad .

Md=Ms $\quad 220-10 \mathrm{i}=120 \quad \mathrm{i}=10$
b) Assume that the required reserve ratio is 20%. The Fed decides to reduce the interest rate to 5%. The Fed must \qquad increase \qquad the money supply by \qquad \$50 \qquad . If the Fed decides to use open market operations to change the money supply, it will have to \qquad bonds. The multiplier is \qquad Thus, to achieve an interest rate of 5%, the Fed will have to \qquad buy bonds in the amount of $\$ 10$ \qquad .
c) Suppose the interest rate is 5%, and marginal propensity to consume is $2 / 3$ and the national income at equilibrium is $\$ 2750$. The Fed decides after a while to reduce the equilibrium level of national income to $\$ 2000$. The Fed must \qquad sell \qquad government securities. This will cause the interest rate to \qquad rise \qquad and the interest sensitive expenditures to \qquad fall \qquad by \qquad $\$ 250$ \qquad .

