<u>AUTOMATION</u>

Given: A repetitive task.

Issue: should its execution be delegated to a machine? (= Automation)

Explore if the task CAN be automated from a technical viewpoint

Figure out the structure of the task according to the following logic:

Get de	sired-level	Goal Setter
Read a	ctual-level	Sensor
If (actu	al level = desired level) then	Comparator
	Maintain actual-level	
Else		Decision-Maker
	Adjust actual-level until it matches desired level	

Determine the type of function to be automated

- Automated input (Caller ID, Speech Recognition, Biometrics, webcam, ...)
- Automated processing
- Automated output (Audio Output, Robotics, ...)

Explore if the task SHOULD be automated from an economic viewpoint

	Fixed Cost	Variable Cost	Advantages	Disadvantages
Manual	LOW	VERY HIGH		
	Training	Payroll	Nord	(D)
	VERY HIGH	LOW (?)	Next	Lage
	Hardware	Maintenance		U U
Automated	 Software 	 Upgrades 		
	Communication			
	 Training 			

Calculate the amount of time it takes for automation to pay for itself

The old system needed 5 clerks. The new system costs \$30,000,	Payback Period -	Fixed Cost	
and needs only 2 people. Each clerk is paid \$20,000/year.	<pre>/ Tayback Tenod =(C</pre>	ost Savings or Revenue Enhancement)/time period	
system to pay for itself?	Is the payback period acceptable?		

Explore if the task SHOULD be automated from a

- social viewpoint (Are the impacts of automation on people acceptable?)
- marketing viewpoint (Does "automated" have a positive image associated with it?)

http://en.wikipedia.org/wiki/Automation http://en.wikipedia.org/wiki/Domotics http://www.domotics.com

Automation Advantages and Disadvantages

Advantages	Disadvantages
Speed	Limited Application Scope
Accuracy	Inability to Handle Exceptions • "smart" = stupid!
Availability	
Convenience	Lack of Security
Productivity	
	Heavy Upfront Investment
Long-Term Cost Reduction (?)	
Privacy (?)	

The Technical Logic of Automation

Components of an automated system:

- I. **Goal setter** (defines the desired state of the system; set by humans and stored in the system)
- II. **Sensor** (keeps receiving information from the external environment about the current level of performance of the system)
- III. **Comparator** (compares the system's current state vs. desired state)
- IV. **Decision maker** (issue a command depending on the outcome of the comparison)

The Structured English Version

GET desired-speed

DOWHILE in operation

READ current-speed

IF current-speed = desired-speed THEN Maintain current-speed

ELSE (* traveling too fast or too slow *)

IF current-speed > desired-speed THEN

DOUNTIL current-speed = desired-speed Decrease current-speed ENDDO

ELSE (* traveling too slow *) DOUNTIL current-speed = desired-speed Increase current-speed ENDDO ENDIF

ENDIF

ENDDO

The Phases of Automation

AUTOMATED INPUT

Receiving input from the external environment without any human intervention

- Caller ID
- Speech Recognition
- Biometrics
-

AUTOMATED PROCESSING

Transforming inputs to outputs without any human intervention

AUTOMATED OUTPUT

Producing output for the external environment without any human intervention

- Audio output
- Robotics
-

Is all automation high-tech?

