1. Let \(A \subseteq \mathbb{R} \) with \(m^*(A) > 0 \). Let \(C \) be a choice set for \(A \). Prove that \(C \) is not measurable.

Proof: First, we prove that

\[
A \subseteq \bigcup_{q \in \mathbb{Q}} (C + q)
\]

Indeed, let \(x \in A \). Since \(C \) is a choice set for \(A \), we have that \(x \sim c \) for some (unique) \(c \in C \). Hence \(x - c \in \mathbb{Q} \) by definition of the rational equivalent relation. So \(x = c + (x - c) \in C + (x - c) \).

Using monotonicity, countable subadditivity and the fact that the outer measure is translation invariant, we get that

\[
0 < m^*(A) \leq m^* \left(\bigcup_{q \in \mathbb{Q}} (C + q) \right) \leq \sum_{q \in \mathbb{Q}} m^*(C + q) = \sum_{q \in \mathbb{Q}} m^*(C) = \begin{cases}
0 & \text{if } m^*(C) = 0 \\
+\infty & \text{if } m^*(C) > 0
\end{cases}
\]

Since \(m^*(A) > 0 \), we must have that \(m^*(C) > 0 \).

Suppose that \(m^*(C \cap [n, n+1)) = 0 \) for all \(n \in \mathbb{Z} \). Since \(C = \cup_{n \in \mathbb{Z}} (C \cap [n, n+1)) \), it follows from countable subadditivity that

\[
m^*(C) = m^* \left(\bigcup_{n \in \mathbb{Z}} (C \cap [n, n+1)) \right) \leq \sum_{n \in \mathbb{Z}} m^* (C \cap [n, n+1)) = 0
\]

a contradiction.

Hence \(m^*(C \cap [n, n+1)) > 0 \) for some \(n \in \mathbb{Z} \). Note that \(C \cap [n, n+1) \) is a bounded set whose outer measure is strictly positive. By Theorem 2.25, any choice set for \(C \cap [n, n+1) \) is non-measurable. However, since \(C \) was a choice set (for \(A \)), we get that no two elements in \(C \cap [n, n+1) \) are related under the rational equivalent relation.

This implies that \(C \) is non-measurable: if \(C \) was measurable, then \(C \cap [n, n+1) \) would be measurable (since \([n, n+1) \) is measurable), a contradiction.

2. Let \(D \subseteq \mathbb{R} \) be measurable and \(f : D \to \mathbb{R} \) a real-valued function. Prove that \(f \) is measurable if and only if \(f^{-1}(B) \) is measurable for any Borel set \(B \).

Proof: Suppose first that \(f^{-1}(B) \) is measurable for each Borel set \(B \). Since open sets are Borel sets, we get that \(f^{-1}(O) \) is measurable for each open set \(O \). So \(f \) is measurable by Theorem 3.4.

Suppose next that \(f \) is measurable. Put \(\mathcal{B} = \{ B \subseteq \mathbb{R} \mid f^{-1}(B) \text{ is measurable} \} \).

We claim that \(\mathcal{B} \) is a \(\sigma \)-algebra (note that this is true whenever \(D \) is measurable; \(f \) does not need to be measurable). Pick \(B \in \mathcal{B} \). Then

\[
f^{-1}(\widetilde{B}) = f^{-1}(B) = D \setminus f^{-1}(B)
\]

which is a difference of measurable sets and hence is measurable. So \(\widetilde{B} \in \mathcal{B} \).

Pick \(B_n \in \mathcal{B} \) for all \(n \geq 1 \). Then

\[
f^{-1}(\bigcup_{n=1}^{+\infty} B_n) = \bigcup_{n=1}^{+\infty} f^{-1}(B_n)
\]

which is a countable union of measurable sets and hence is measurable. So \(\bigcup_{n=1}^{+\infty} B_n \in \mathcal{B} \).

Hence \(\mathcal{B} \) is a \(\sigma \)-algebra, which proves the claim.
Since \(f \) is measurable, it follows from Theorem 3.4 that \(f^{-1}(O) \) is measurable for each open set \(O \). Hence \(O \in \mathcal{B} \) for each open set \(O \). Since the collection of all Borel sets is the smallest \(\sigma \)-algebra containing the collection of all the open sets and \(\mathcal{B} \) is some \(\sigma \)-algebra containing the collections of all the open sets, we get that \(B \in \mathcal{B} \) for each Borel set \(B \). Hence \(f^{-1}(B) \) is measurable for each Borel set \(B \).

3. True/False : If \(f : [a, b] \to \mathbb{R} \) is continuous a.e. on \([a, b]\), then there exists a continuous function \(g : [a, b] \to \mathbb{R} \) such that \(f = g \) a.e. on \([a, b]\).

Solution : **FALSE**

Put

\[
 f : [-1, 1] \to \mathbb{R} : x \to \begin{cases}
 -1 & \text{if } -1 \leq x \leq 0 \\
 1 & \text{if } 0 < x \leq 1
\end{cases}
\]

Then \(f \) is continuous over \([-1, 0) \cup (0, 1]\). So \(f \) is continuous a.e. on \([-1, 1]\). Suppose that \(g : [-1, 1] \to \mathbb{R} \) is continuous over \([-1, 1]\) and \(f = g \) a.e. on \([-1, 1]\). Put \(E = \{x \in [-1, 1] \mid f(x) \neq g(x)\} \). Then \(m(E) = 0 \).

Pick \(n \in \mathbb{N} \). If \((0, \frac{1}{n}) \setminus E = \emptyset\), then \((0, \frac{1}{n}) \subseteq E\), a contradiction since \(m\left((0, \frac{1}{n})\right) = \frac{1}{n} > 0 = m(E)\). So we can pick \(a_n \in (0, \frac{1}{n}) \setminus E \). Since \(0 < a_n < \frac{1}{n} \) for all \(n \in \mathbb{N} \), we get that \(\{a_n\}_{n \geq 1} \to 0 \). Since \(g \) is continuous at \(0 \), we get that \(\{g(a_n)\}_{n \geq 1} \to g(0) \). Since \(a_n \notin E \), \(g(a_n) = f(a_n) = 1 \) for all \(n \geq 1 \). So \(\{g(a_n)\}_{n \geq 1} = \{1\}_{n \geq 1} \to 1 \). Hence \(g(0) = 1 \).

Similarly, we can pick \(b_n \in (-\frac{1}{n}, 0) \setminus E \) for all \(n \in \mathbb{N} \). Then \(\{b_n\}_{n \geq 1} \to 0 \) and so \(\{g(b_n)\}_{n \geq 1} \to g(0) \). But \(g(b_n) = f(b_n) = -1 \) and so \(\{g(b_n)\}_{n \geq 1} \to -1 \). Hence \(g(0) = -1 \), a contradiction.

4. Let \(f : [a, b] \to \mathbb{R} \) and \(g : [a, b] \to \mathbb{R} \) be continuous on \([a, b]\) such that \(f = g \) a.e. on \([a, b]\). Prove that \(f = g \) on \([a, b]\).

Proof : Suppose that \(f \neq g \) on \([a, b]\). Let \(x_0 \in [a, b] \) with \(f(x_0) \neq g(x_0) \). Put \(h = f - g \). Then \(h \) is continuous on \([a, b]\) and \(h(x_0) \neq 0 \). Since \(h \) is continuous at \(x_0 \), we know that \(h \neq 0 \) in some interval containing \(x_0 \):

\[
 \exists \delta > 0 : \forall x \in [a, b] : |x - x_0| < \delta \implies h(x) \neq 0
\]

So \(h \neq 0 \) on \([a, b] \cap (x_0 - \delta, x_0 + \delta)\). Hence \(g \neq f \) on \([a, b] \cap (x_0 - \delta, x_0 + \delta)\), a contradiction since \(f = g \) a.e. on \([a, b]\) and \(m([a, b] \cap (x_0 - \delta, x_0 + \delta)) > 0 \).

So \(f = g \) on \([a, b]\).

5. Let \(I \) be an interval and \(f : I \to \mathbb{R} \) a function that is monotone on \(I \). Then \(f \) is measurable.

Proof : First we prove the following characterization of an interval (basically ‘no wholes’):

Let \(S \subseteq \mathbb{R} \) such that for all \(a, b \in S \) with \(a < b \), we have that \((a, b) \subseteq S \). Then \(S \) is an interval.

If \(|S| = 0 \) or \(|S| = 1 \) then \(S \) is an interval. So we may assume that \(|S| \geq 2 \).

Put \(\alpha = \inf S \) and \(\beta = \sup S \). Note that it is possible that \(\alpha = -\infty \) and/or \(\beta = +\infty \). Clearly, \(S \subseteq [\alpha, \beta] \) since \(\alpha \leq s \leq \beta \) for all \(s \in S \). We show that \((\alpha, \beta) \subseteq S \). Pick \(x \in (\alpha, \beta) \). So \(\inf S < x < \sup S \). Hence \(a < x < b \) for some \(a, b \in S \). Thus \(x \in (a, b) \subseteq S \). So \((\alpha, \beta) \subseteq S \). So we have

\[
 (\alpha, \beta) \subseteq S \subseteq [\alpha, \beta]
\]

That gives us four possibilities for \(S \):

\[
 S = (\alpha, \beta) \text{ or } S = (\alpha, \beta) \text{ or } S = [\alpha, \beta] \text{ or } S = [\alpha, \beta]
\]
Hence S is an interval, which proves the characterization of an interval.

Now we can prove that f is measurable. WLOG, assume that f is non-decreasing on I. Let $\alpha \in \mathbb{R}$. Put $S = \{ x \in I : f(x) > \alpha \}$. If $|S| \leq 1$ then S is measurable. So assume $|S| \geq 2$. Let $a, b \in S$ with $a < b$. Then $f(a) > \alpha$. Let $x \in (a, b)$. Then $x \in I$ and $a < x$. Hence $\alpha < f(a) \leq f(x)$. So $f(x) > \alpha$ and $x \in S$. Thus $(a, b) \subseteq S$. By the characterization of an interval, we get that S is an interval. So S is measurable. Hence f is measurable. \qed