1. For each \(n \in \mathbb{N} \), we define \(f_n : [0, +\infty) \to \mathbb{R} : x \to \begin{cases} 1 & \text{if } n \leq x < n + 1 \\ 0 & \text{elsewhere} \end{cases} \).

Prove that \(\int_{[0, +\infty)} \lim f_n < \lim \int_{[0, +\infty)} f_n \).

This shows that we might have strict inequality in Fatou’s Lemma.

2. Let \(g, f, h : D \to \mathbb{R} \) be measurable functions such that \(g \) and \(h \) are integrable over \(D \) and \(g \leq f \leq h \) a.e. on \(D \). Prove that \(f \) is integrable over \(D \).

3. Let \(g, f, f_n : D \to \mathbb{R} \) be measurable functions for all \(n \geq 1 \) such that \(g \) is integrable over \(D \), \(|f_n| \leq g \) a.e. on \(D \) for all \(n \geq 1 \) and \(\langle f_n \rangle_{n \geq 1} \to f \) a.e. on \(D \). Prove that \(\{\int_E |f_n - f|\}_{n \geq 1} \to 0 \).

Hint: use the Lebesgue Convergence Theorem.

4. Let \(g, f_n : D \to \mathbb{R} \) be measurable functions for all \(n \geq 1 \) such that \(g \) is integrable over \(D \) and \(|f_n| \leq g \) a.e. on \(D \) for all \(n \geq 1 \). Prove that
\[
\int_D \lim f_n \leq \lim \int_D f_n \leq \limsup \int_D f_n
\]

5. Let \(f : E \to \mathbb{R} \) be a measurable function and \(E_n \) a measurable subset of \(E \) for all \(n \geq 1 \) such that \(f \) is integrable over \(E_n \) for all \(n \geq 1 \).

(a) Suppose that \(\sum_{n=1}^{+\infty} \int_{E_n} |f| \) converges. Prove that \(f \) is integrable over \(\bigcup_{n=1}^{+\infty} E_n \) and that
\[
\left| \int_{\bigcup_{n \geq 1} E_n} f \right| \leq \sum_{n=1}^{+\infty} \int_{E_n} |f|.
\]

(b) Give an example where \(\sum_{n=1}^{+\infty} \left| \int_{E_n} f \right| \) converges but \(f \) is not integrable over \(\bigcup_{n=1}^{+\infty} E_n \).

Hint for (a): Put \(B_1 = E_1 \) and \(B_n = E_n \setminus (E_1 \cup \cdots \cup E_{n-1}) \) for \(n \geq 2 \). Show that \(\bigcup_{n \geq 1} E_n = \bigcup_{n \geq 1} B_n \) and \(\int_{B_n} f^\pm \leq \int_{E_n} |f| \) for all \(n \geq 1 \).