1. (10 pts) True or False (prove your answer or give a counter example):

(a) (5 pts) A subset A of \mathbb{R} is bounded if and only if $m^*(A)$ is finite.

(b) (5 pts) The set $\left\{ \frac{n}{m} : m, n \in \mathbb{Z} \text{ and } m \geq 0 \right\}$ is countable.

Solution:

(a) FALSE: Consider \mathbb{Q}. Since \mathbb{Q} is countable, we know that $m^*(\mathbb{Q}) = 0$. But \mathbb{Q} is not bounded.

(b) TRUE: The given set is clearly a subset of \mathbb{Q}. Since \mathbb{Q} is countable and a subset of a countable set is countable, we have that the given set is countable. □

Remark on (a): One direction is true: if A is bounded then $m^*(A)$ is finite. Indeed, since A is bounded, there exists some $M > 0$ such that $|a| \leq M$ for all $a \in A$. So $A \subseteq [-M, M]$. Using monotonicity and the fact that the outer measure of an interval is the length of that interval, we get that $m^*(A) \leq m^*([-M, M]) = 2M$. So $m^*(A)$ is finite.

2. (15 pts) Let A be any subset of \mathbb{R} and $\{E_n\}_{n=1}^{\infty}$ a sequence of pairwise disjoint measurable subsets of \mathbb{R}.

(a) (5 pts) Show that $m^*(A \cap (\bigcup_{i=1}^{\infty} E_i)) \leq \sum_{i=1}^{\infty} m^*(A \cap E_i)$

(b) (5 pts) Show that $\sum_{i=1}^{n} m^*(A \cap E_i) \leq m^*(A \cap (\bigcup_{i=1}^{\infty} E_i))$ for all $n \geq 1$.

(c) (5 pts) Use (a) and (b) to deduce that $m^*(A \cap (\bigcup_{i=1}^{\infty} E_i)) = \sum_{i=1}^{\infty} m^*(A \cap E_i)$

Proof:

(a) Note that $A \cap (\bigcup_{i=1}^{\infty} E_i) = \bigcup_{i=1}^{\infty} (A \cap E_i)$ by the Distributive Law. Hence by countable subadditivity, we get that

$m^*(A \cap (\bigcup_{i=1}^{\infty} E_i)) = m^*(\bigcup_{i=1}^{\infty} (A \cap E_i)) \leq \sum_{i=1}^{\infty} m^*(A \cap E_i)$

(b) Let $n \geq 1$. Note that $A \cap (\bigcup_{i=1}^{n} E_i) \subseteq A \cap (\bigcup_{i=1}^{\infty} E_i)$. So by monotonicity and Lemma 2.14, we get that

$\sum_{i=1}^{n} m^*(A \cap E_i) = m^*(A \cap (\bigcup_{i=1}^{n} E_i)) \leq m^*(A \cap (\bigcup_{i=1}^{\infty} E_i))$

(c) From (b), we have that

$\sum_{i=1}^{n} m^*(A \cap E_i) \leq m^*(A \cap (\bigcup_{i=1}^{\infty} E_i))$ for all $n \geq 1$

Taking the limit as $n \to +\infty$ on both sides (note that the right hand side is independent of n), we find

$\sum_{i=1}^{\infty} m^*(A \cap E_i) = \lim_{n \to +\infty} \sum_{i=1}^{n} m^*(A \cap E_i) \leq m^*(A \cap (\bigcup_{i=1}^{\infty} E_i))$

Combining this with (a), we get that

$m^*(A \cap (\bigcup_{i=1}^{\infty} E_i)) = \sum_{i=1}^{\infty} m^*(A \cap E_i)$ □
3. (10 pts) We say that a subset of \(\mathbb{R} \) is of type \(F_\sigma \) if it is the countable union of closed sets and is of type \(G_\delta \) if it is the countable intersection of open sets.

Prove that \([1,3)\) is a set of type \(F_\sigma \) and a set of type \(G_\delta \).

Proof: First, we show that
\[
[1,3) = \bigcup_{n=1}^{+\infty} \left[1, 3 - \frac{1}{n}\right].
\]
Pick \(x \in \bigcup_{n \geq 1} \left[1, 3 - \frac{1}{n}\right] \). Then there exists \(n \geq 1 \) with \(x \in \left[1, 3 - \frac{1}{n}\right] \subset [1,3) \).

Pick \(x \in [1,3) \). Then \(x < 3 \) and so \(3 - x > 0 \). Hence \(\frac{1}{3 - x} > 0 \). Let \(m \in \mathbb{N} \) with \(m > \frac{1}{3 - x} \) (this is possible by Archimedes). Then \(3 - x > \frac{1}{m} \) and so \(x < 3 - \frac{1}{m} \). Hence
\[
x \in \left[1, 3 - \frac{1}{m}\right] \subseteq \bigcup_{n=1}^{+\infty} \left[1, 3 - \frac{1}{n}\right].
\]

Another way: Since \(3 - x > 0 \) and \(\lim_{n \to +\infty} \frac{1}{n} = 0 \), there exists \(m \in \mathbb{N} \) with \(0 < \frac{1}{m} < 3 - x \).

Since \(\left[1, 3 - \frac{1}{n}\right] \) is a closed set for all \(n \in \mathbb{N} \), we get that \([1,3)\) is a countable union of closed sets. So \([1,3)\) is of type \(F_\sigma \).

Next, we show that
\[
[1,3) = \bigcap_{n=1}^{+\infty} \left(1 - \frac{1}{n}, 3\right).
\]
Pick \(x \in [1,3) \). So \(1 \leq x < 3 \). Hence \(1 - \frac{1}{n} < 1 \leq x < 3 \) for all \(n \in \mathbb{N} \). Then \(x \in \left(1 - \frac{1}{n}, 3\right) \) for all \(n \in \mathbb{N} \).

Pick \(x \in \bigcap_{n=1}^{+\infty} \left(1 - \frac{1}{n}, 3\right) \). Then \(x \in \left(1 - \frac{1}{n}, 3\right) \) for all \(n \geq 1 \). Hence
\[
1 - \frac{1}{n} < x < 3 \quad \text{for all } n \geq 1
\]
Taking the limit as \(n \to +\infty \), we find \(1 \leq x < 3 \). So \(x \in [1,3) \).

Since \(\left(1 - \frac{1}{n}, 3\right) \) is an open set for all \(n \in \mathbb{N} \), we get that \([1,3)\) is a countable intersection of open sets. So \([1,3)\) is of type \(G_\delta \).

\[\square\]

4. (15 pts) Prove that \(\mathcal{C} := \{A \subseteq \mathbb{R} \mid m^*(A) = 0 \text{ or } m^*(\tilde{A}) = 0\} \) is a \(\sigma \)-algebra.

Proof: Pick \(A \in \mathcal{C} \). If \(m^*(\tilde{A}) = 0 \), then \(\tilde{A} \in \mathcal{C} \). If \(m^*(\tilde{A}) \neq 0 \), then \(0 = m^*(A) = m^*(\tilde{\tilde{A}}) \) and again \(\tilde{A} \in \mathcal{C} \).

Let \(\{A_n \mid n \in \mathbb{N}\} \) be a countable collection of elements in \(\mathcal{C} \). Suppose first that \(m^*(A_n) = 0 \) for all \(n \in \mathbb{N} \). By countable subadditivity, we get that
\[
0 \leq m^*(\bigcup_{n=1}^{+\infty} A_n) \leq \sum_{n=1}^{+\infty} m^*(A_n) = 0
\]
So \(m^*(\bigcup_{n=1}^{+\infty} A_n) = 0 \) and \(\bigcup_{n=1}^{+\infty} A_n \in \mathcal{C} \). Suppose next that \(m^*(A_k) \neq 0 \) for some \(k \in \mathbb{N} \). Then \(m^*(\complement A_k) = 0 \) since \(A_k \in \mathcal{C} \). By De Morgan’s Law, we get that \(\bigcup_{n=1}^{+\infty} A_n = \bigcap_{n=1}^{+\infty} \complement A_n \subseteq \complement A_k \). By monotonicity

\[
0 \leq m^* \left(\bigcup_{n=1}^{+\infty} A_n \right) \leq m^*(\complement A_k) = 0
\]

So \(m^* \left(\bigcup_{n=1}^{+\infty} A_n \right) = 0 \) and again \(\bigcup_{n=1}^{+\infty} A_n \in \mathcal{C} \).

Hence \(\mathcal{C} \) is a \(\sigma \)-algebra. \(\square \)

5. (10 pts) For \(A \subseteq \mathbb{R} \), we define

\[
m^{**}(A) = \inf \{ m^*(\mathcal{O}) : \mathcal{O} \text{ is open and } A \subseteq \mathcal{O} \}
\]

How is \(m^{**}(A) \) related to \(m^*(A) \)? Prove your ‘best’ answer (e.g. if you believe that \(m^*(A) \leq m^{**}(A) \) then you need to prove this inequality and prove that we do not always have equality).

Proof: We will show that \(m^{**}(A) = m^*(A) \) for all \(A \subseteq \mathbb{R} \). Let \(A \subseteq \mathbb{R} \).

Let \(\{I_k\}_{k \geq 1} \) be a ccoi of \(A \). Put \(\mathcal{O} = \bigcup_{k=1}^{+\infty} I_k \). Then \(\mathcal{O} \) is an open set containing \(A \) and

\[
m^*(\mathcal{O}) = m^*(\bigcup_{k=1}^{+\infty} I_k) \leq \sum_{k=1}^{+\infty} m^*(I_k) = \sum_{k=1}^{+\infty} l(I_k)
\]

by countable subadditivity and the fact that the outer measure of an interval is the length of the interval. By definition of \(m^{**}(A) \), we see that \(m^{**}(A) \leq m^*(\mathcal{O}) \). So we proved

\[
m^{**}(A) \leq \sum_{k=1}^{+\infty} l(I_k)
\]

where \(\{I_k\}_{k \geq 1} \) is an arbitrary ccoi of \(A \).

By definition of \(m^*(A) \), we get that \(m^{**}(A) \leq m^*(A) \).

Let \(\mathcal{O} \) be an open set with \(A \subseteq \mathcal{O} \). By monotonicity, we get that \(m^*(A) \leq m^*(\mathcal{O}) \). Since this is true for all open sets \(\mathcal{O} \) containing \(A \), it follows from the definition of \(m^{**}(A) \) that \(m^*(A) \leq m^{**}(A) \).

Hence \(m^{**}(A) = m^*(A) \). \(\square \)

6. (10 pts) Let \(A, B \subseteq \mathbb{R} \) and \(x \in \mathbb{R} \). Prove the following:

(a) (5 pts) \(A \cap (B + x) = ((A - x) \cap B) + x \)

(b) (5 pts) \(\widetilde{A + x} = \widetilde{A} + x \)

Proof: (a) Let \(y \in A \cap (B + x) \). Then \(y \in A \) and so \(y - x \in A - x \). Also, \(y \in B + x \). So \(y = b + x \) for some \(b \in B \). Hence \(y - x = b \in B \). Thus \(y - x \in (A - x) \cap B \). Since \(y = (y - x) + x \), we get that \(y \in ((A - x) \cap B) + x \). So \(A \cap (B + x) \subseteq ((A - x) \cap B) + x \).

Using this result with \(A \leftrightarrow B \) and \(x \leftrightarrow -x \), we get that

\[
B \cap (A - x) \subseteq ((B + x) \cap A) - x
\]

Hence

\[
(B \cap (A - x)) + x \subseteq ((B + x) \cap A) - x + x = (B + x) \cap A
\]

(b) Let \(y \in \mathbb{R} \). Then
\[y \in \widehat{A} + x \iff y \notin A + x \]
\[\iff \neg(y \in A + x) \]
\[\iff \neg(y - x \in A) \]
\[\iff y - x \notin A \]
\[\iff y - x \in \widehat{A} \]
\[\iff y \in \widehat{A} + x \]

7. (10 pts) Let \(f : D \rightarrow \mathbb{R} \) be a function. Prove that \(f \) is continuous over \(D \) if and only if for every closed set \(F \) there exists a closed set \(F^* \) such that \(f^{-1}(F) = D \cap F^* \).

Proof: Suppose first that \(f \) is continuous over \(F \). Let \(F \subseteq \mathbb{R} \) be a closed set. Then \(O := \widehat{F} \) is an open set. By Theorem 1.33, there exists an open set \(O^* \) such that \(f^{-1}(O) = D \cap O^* \). Be careful with the complement notation: we know that if \(g : X \rightarrow Y \) is a function and \(B \subseteq Y \) then \(g^{-1}(\widehat{B}) = g^{-1}(B) \) but \(\widehat{B} = Y \setminus B \) and \(g^{-1}(\widehat{B}) = X \setminus g^{-1}(B) \).

So here we get
\[
D \cap O^* = f^{-1}(O) = D \setminus f^{-1}(F) = D \cap f^{-1}(F)
\]

For this proof, let us reserve the complement notation for the complement in \(\mathbb{R} \). Put \(F^* = \widehat{O^*} \). Then \(F^* \) is closed. Since \(f^{-1}(F) \subseteq D \), we get
\[
f^{-1}(F) = D \setminus f^{-1}(F) = D \cap f^{-1}(F) = D \cap D \cap \widehat{O^*} = D \cap (\widehat{D} \cup \widehat{O^*}) = D \cap (\widehat{D} \cup F^*)
\]

Thus
\[
f^{-1}(F) = D \cap (\widehat{D} \cup F^*) = D \cap (\widehat{D} \cap (D \cap F^*)) = \emptyset \cup (D \cap F^*) = D \cap F^*
\]

Suppose next that for every closed set \(F \), there exists a closed set \(F^* \) such that \(f^{-1}(F) = D \cap F^* \). Let \(O \subseteq \mathbb{R} \) be an open set. Then \(F := \widehat{O} \) is a closed set. Hence there exists a closed set \(F^* \) such that
\[
D \setminus f^{-1}(O) = D \setminus f^{-1}(\widehat{O}) = f^{-1}(F) = D \cap F^*
\]

Put \(O^* = \widehat{F^*} \). Then \(O^* \) is open. Since \(f^{-1}(O) \subseteq D \), we get
\[
f^{-1}(O) = D \setminus f^{-1}(O) = D \cap f^{-1}(O) = D \cap (D \cap F^*) = D \cap D \cap \widehat{F^*} = D \cap (\widehat{D} \cup F^*) = D \cap (\widehat{D} \cup O^*)
\]

Thus
\[
f^{-1}(O) = D \cap (\widehat{D} \cup O^*) = (D \cap \widehat{D}) \cup (D \cap O^*) = \emptyset \cup (D \cap O^*) = D \cap O^*
\]

By Theorem 1.33, \(f \) is continuous over \(D \). \(\square \)