1. Let X be a set, \mathcal{C} a collection of subsets of X and \mathcal{A} the algebra generated by \mathcal{C}. Prove that \mathcal{C} and \mathcal{A} generate the same σ-algebra.

Proof: Let $(\mathcal{C})_\sigma$ be the σ-algebra generated by \mathcal{C} and $(\mathcal{A})_\sigma$ the σ-algebra generated by \mathcal{A}.

Note that $\mathcal{C} \subseteq \mathcal{A} \subseteq (\mathcal{A})_\sigma$. So $(\mathcal{A})_\sigma$ is a σ-algebra containing \mathcal{C}. Since $(\mathcal{C})_\sigma$ is the smallest σ-algebra containing \mathcal{C}, we get that $(\mathcal{C})_\sigma \subseteq (\mathcal{A})_\sigma$.

Since $(\mathcal{C})_\sigma$ is a σ-algebra containing \mathcal{C} and every σ-algebra is an algebra, we have that $(\mathcal{C})_\sigma$ is an algebra containing \mathcal{C}. But \mathcal{A} is the smallest algebra containing \mathcal{C}. Hence $\mathcal{A} \subseteq (\mathcal{C})_\sigma$. So $(\mathcal{C})_\sigma$ is a σ-algebra containing \mathcal{A}. Since $(\mathcal{A})_\sigma$ is the smallest σ-algebra containing \mathcal{A}, we have that $(\mathcal{A})_\sigma \subseteq (\mathcal{C})_\sigma$.

Hence $(\mathcal{C})_\sigma = (\mathcal{A})_\sigma$. □

2. Show that the condition ‘$m(E_1) \neq +\infty$’ is needed in part (b) of Proposition 2.23 on page 31.

Solution: Put $E_k = [k, +\infty)$ for all $k \in \mathbb{N}$. Then E_k is measurable, $m(E_k) = +\infty$ and

$$E_{k+1} = [k + 1, +\infty) \subseteq [k, +\infty) = E_k$$

for all $k \in \mathbb{N}$. So $\{E_k\}_{k \geq 1}$ is a descending sequence of measurable sets and $\lim_{k \to +\infty} m(E_k) = +\infty$.

Suppose that $\cap_{k \geq 1} E_k \neq \emptyset$. Let $x \in \cap_{k \geq 1} E_k$. Then $x \in E_k = [k, +\infty)$ for all $k \geq 1$. By Archimedes’ Axiom, there exists $n \in \mathbb{N}$ with $x < n$. So $x \notin E_n$, a contradiction. Hence $\cap_{k \geq 1} E_k = \emptyset$ and so

$$m(\cap_{k \geq 1} E_k) = m(\emptyset) = 0 \neq +\infty = \lim_{k \to +\infty} m(E_k)$$ □

3. Let E_1, E_2 be measurable sets. Prove that

$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2)$$

Proof: Note that $E_1 \cap E_2$, $E_1 \cup E_2$ and $E_1 \setminus E_2 = E_1 \setminus (E_1 \cap E_2)$ are all measurable sets.

If $m(E_1 \cap E_2) = +\infty$, then it follows from monotonicity that $m(E_1) = m(E_2) = m(E_1 \cup E_2) = +\infty$ since $E_1 \cap E_2 \subseteq E_1, E_2, E_1 \cup E_2$. But then $m(E_1 \cup E_2) = m(E_1 \cap E_2) = m(E_1) + m(E_2)$.

So we may assume that $m(E_1 \cap E_2)$ is finite. Note that

$$E_1 \cup E_2 = E_2 \cup (E_1 \setminus E_2) = E_2 \cup (E_1 \setminus (E_1 \cap E_2))$$

Using countable additivity and excision, we find

$$m(E_1 \cup E_2) = m(E_2) + m(E_1 \setminus (E_1 \cap E_2)) = m(E_2) + m(E_1) - m(E_1 \cap E_2)$$

Hence $m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2)$. □

There is another (shorter) proof that does not require us to distinguish several cases. Since

$$E_1 \cap E_2 = E_1 \cap (E_2 \setminus E_1) = E_1 \cup (E_2 \cap E_1)$$

it follows from countable additivity and the measurability of E_1 that

$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2 \cap E_1) + m(E_2 \cap E_1) = m(E_1) + m(E_2)$$
4. Let $D \subseteq \mathbb{R}$ be a Borel set and $f : D \rightarrow \mathbb{R}$ a function. Prove that the collection

$$S = \{ E \subseteq \mathbb{R} : f^{-1}(E) \text{ is a Borel set} \}$$

is a σ-algebra.

Proof: Note that $S \neq \emptyset$: $f^{-1}(\mathbb{R}) = D$ is a Borel set and so $\mathbb{R} \in S$.

Pick $B \in S$. Then

$$f^{-1}(\overline{B}) = f^{-1}(\bar{B}) = D \setminus f^{-1}(B)$$

which is a difference of Borel sets and hence is a Borel set since the collection of Borel sets is a σ-algebra. So $\overline{B} \in S$.

Pick $B_n \in S$ for all $n \geq 1$. Then

$$f^{-1}(\bigcup_{n=1}^{\infty} B_n) = \bigcup_{n=1}^{\infty} f^{-1}(B_n)$$

which is a countable union of Borel sets and hence is a Borel set since the collection of Borel sets is a σ-algebra. So $\bigcup_{n=1}^{\infty} B_n \in S$.

Hence S is a σ-algebra. \qed

5. Let $D \subseteq \mathbb{R}$ be a Borel set and $f : D \rightarrow \mathbb{R}$ a function continuous on D. Prove that $f^{-1}(B)$ is a Borel set for all Borel sets $B \subseteq \mathbb{R}$.

Proof: Put $\mathcal{S} = \{ E \subseteq \mathbb{R} : f^{-1}(E) \text{ is a Borel set} \}$. It follows from the previous exercise that \mathcal{S} is a σ-algebra.

Let \mathcal{O} be an open set. Since f is continuous, it follows from Theorem 1.33 that $f^{-1}(\mathcal{O}) = D \cap \mathcal{O}^\ast$ for some open set \mathcal{O}^\ast. Since D and \mathcal{O}^\ast are Borel sets and the collection of Borel sets is a σ-algebra, we get that $f^{-1}(\mathcal{O})$ is a Borel set. So $\mathcal{O} \in \mathcal{S}$.

Hence \mathcal{S} is a σ-algebra containing all the open sets. But the collection of Borel sets is the smallest σ-algebra containing all the open sets. Hence every Borel set belongs to \mathcal{S}. Let B be a Borel set. Then $B \in \mathcal{S}$. So $f^{-1}(B)$ is a Borel set. \qed

6. A subset of \mathbb{R} is a G_δ-set if it is the intersection of a countable collection of open sets.

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a function. Prove that the set of all points at which f is continuous is a G_δ-set.

Proof: Put $\mathcal{S} = \{ a \in \mathbb{R} : f \text{ is continuous at } x = a \}$. For $n \in \mathbb{N}$, put

$$D_n = \left\{ a \in \mathbb{R} : \text{there exists an open set } \mathcal{O} \text{ such that } a \in \mathcal{O} \text{ and } |f(x) - f(y)| < \frac{1}{n} \text{ for all } x, y \in \mathcal{O} \right\}$$

First, we prove that D_n is open for all $n \geq 1$. Indeed, let $n \geq 1$. Pick $a \in D_n$. Then there exists an open set \mathcal{O} such that $a \in \mathcal{O}$ and $|f(x) - f(y)| < \frac{1}{n}$ for all $x, y \in \mathcal{O}$. Since $a \in \mathcal{O}$ and \mathcal{O} is open, we get that $(a - \delta, a + \delta) \subseteq \mathcal{O}$ for some $\delta > 0$. Pick $b \in (a - \delta, a + \delta)$. Then $b \in \mathcal{O}$ and $|f(x) - f(y)| < \frac{1}{n}$ for all $x, y \in \mathcal{O}$. So $b \in D_n$. Hence $(a - \delta, a + \delta) \subseteq D_n$ and D_n is open.

Next, we prove that $S = \cap_{n \geq 1} D_n$.

Pick $a \in S$. Pick $n \in \mathbb{N}$. Since f is continuous at a, we get

$$\exists \delta > 0 : \forall x \in \mathbb{R} : |x - a| < \delta \implies |f(x) - f(a)| < \frac{1}{2n}$$
Put $O = (a - \delta, a + \delta)$. Then O is an open set and $a \in O$. Pick $x, y \in O$. Then $|x - a| < \delta$ and $|y - a| < \delta$. Hence

$$|f(x) - f(y)| \leq |f(x) - f(a)| + |f(a) - f(y)| < \frac{1}{2n} + \frac{1}{2} = \frac{1}{n}$$

So $a \in D_n$. Since this is true for all $n \in \mathbb{N}$ and all $a \in S$, we get that $S \subseteq \bigcap_{n \geq 1} D_n$.

Pick $a \in \bigcap_{n \geq 1} D_n$. Pick $\epsilon > 0$. Let $n \in \mathbb{N}$ with $\frac{1}{n} < \epsilon$. Since $a \in D_n$, we get that there exists an open set O such that $a \in O$ and $|f(x) - f(y)| < \frac{1}{n}$ for all $x, y \in O$. Since $a \in O$ and O is open, we have that $(a - \delta, a + \delta) \subseteq O$ for some $\delta > 0$. Pick $x \in \mathbb{R}$ with $|x - a| < \delta$. Then $a, x \in (a - \delta, a + \delta) \subseteq O$. Hence

$$|f(x) - f(a)| < \frac{1}{n} < \epsilon$$

So f is continuous at a. Thus $a \in S$. Since this is true for all $a \in \bigcap_{n \geq 1} D_n$, we get that $\bigcap_{n \geq 1} D_n \subseteq S$.

Hence $S = \bigcap_{n \geq 1} D_n$.

We proved that S is the countable intersection of open sets. So S is of type G_δ. \qed