1. Define a relation \(R \) on \(\mathbb{Z} \) by \(x R y \) if \(x \cdot y \geq 0 \). Prove or disprove the following:

 (a) \(R \) is reflexive;
 (b) \(R \) is symmetric;
 (c) \(R \) is transitive.

 Solution:

2. Let \(A = \{1, 2, 3, 4\} \). Give an example of a relation on \(A \) that is:

 (a) reflexive and symmetric, but not transitive;
 (b) symmetric and transitive, but not reflexive;
 (c) symmetric, but neither transitive nor reflexive.

 Solution:

3. Let \(R \) be an equivalence relation on \(A = \{a, b, c, d, e, f, g\} \) such that \(a R c, c R d, d R g, \) and \(b R f \). If there are three distinct equivalence classes that result from \(R \), then determine these equivalence classes and determine all elements of \(R \).

 Solution:

4. Define a relation \(R \) on \(\mathbb{Z} \) as \(x R y \) if and only if \(x^2 + y^2 \) is even. Prove \(R \) is an equivalence relation and determine its distinct equivalence classes.

 Solution:

5. Prove or disprove. If \(R \) and \(S \) are two equivalence relations on a set \(A \), then \(R \cap S \) is also an equivalence relation on \(A \).

 Solution:

6. Describe the partition of \(\mathbb{Z} \) resulting from the equivalence relation \(\equiv \ (\text{mod } 3) \).

 Solution:
7. Write the addition and multiplication tables for \(\mathbb{Z}_8 \).

Solution:

8. Prove or disprove. If \([a], [b] \in \mathbb{Z}_6\) and \([a][b] = [0]\), then either \([a] = [0]\) or \([b] = [0]\).

Solution: