1 Isolated Singular Points – Section 68 of Brown and Churchill

Definition.

(1) z_0 is a **singular point** of a function f if f is not analytic at z_0, but is analytic at some point in every neighborhood of z_0.

(2) A singular point z_0 is an **isolated singular point** if, in addition, there is a deleted neighborhood $0 < |z - z_0| < \epsilon$ of z_0 throughout which f is analytic.

Example. Determine all singularities of the following functions, and determine if the singularity is isolated.

(1) $f(z) = \frac{\cos z}{z^2}$

$z^2 = 0$ only if $z = 0$, so $z_0 = 0$ is the only singularity. And $f(z)$ is analytic for all $z \neq 0$. Therefore, $z = 0$ is an isolated singularity.

(2) $f(z) = \frac{e^z - 1}{z^2}$

Clearly, $z = 0$ is the only singularity. Again, $f(z)$ is analytic for all $z \neq 0 \implies z = 0$ is an isolated singular point. Note that

$$\frac{e^z - 1}{z^2} = \left(1 + \frac{z^2}{2!} + \cdots \right) - 1 = \frac{1}{z} + \frac{1}{2!} + \frac{z}{3!} + \cdots .$$

(3) $f(z) = \frac{z}{z^2 + 1}$

$z^2 + 1 = 0$ if and only if $z = \pm i$. In this case, then, $f(z)$ has two singularities, both of which are isolated.
(4) \(f(z) = \frac{1 - \cos z}{z} \)

We can see that \(z = 0 \) is the only singular point, and thus, \(z_0 = 0 \) is an isolated singular point.

\[
f(z) = \frac{1 - \cos z}{z} = \frac{1 - \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \cdots \right)}{z} = \frac{z}{2!} - \frac{z^3}{4!} + \cdots.
\]

Note that if we define \(f(0) = 0 \), then \(f(z) \) is analytic at \(z = 0 \).

(5) \(f(z) = e^{\frac{z}{2}} \)

\(z = 0 \) is the only singular point of \(f(z) \) and, thus, it is an isolated singular point. Note that

\[
e^{\frac{z}{2}} = 1 + \frac{1}{2} + \frac{1}{2!} \left(\frac{1}{z^2}\right) + \frac{1}{3!} \left(\frac{1}{z^3}\right) + \cdots.
\]

(6) \(f(z) = \frac{1}{\sinh \left(\frac{1}{z}\right)} \)

\[
\sinh \left(\frac{1}{z}\right) = 0 \text{ if } \frac{1}{z} = n\pi i, \ n = \pm 1, \pm 2, \ldots \text{ (Verify.)}
\]

\[
\implies z = -\frac{1}{n\pi}, \ n \in \mathbb{Z}, \text{ or } z = \frac{1}{n\pi} i, \ n = \pm 1, \pm 2, \ldots.
\]

Therefore, the singular points of \(f(z) \) are \(z = 0, z = \pm \frac{1}{\pi} i, z = \pm \frac{1}{2\pi} i, \ldots \).

\(z = \frac{1}{n\pi} i, \ n = \pm 1, \pm 2, \ldots \) are isolated singular points, since there is a deleted neighborhood of each point throughout which \(f \) is analytic.

\(z = 0 \) is not an isolated singularity, because every deleted \(\epsilon \)-neighborhood of \(z = 0 \) contains at least one point of the form \(z = \frac{1}{n\pi} i \).

Why? If we choose \(n \) so that

\[
\frac{1}{n\pi} < \epsilon
\]

\[
\implies n > \frac{1}{\pi\epsilon},
\]

then \(\frac{1}{n\pi} i \) is inside the deleted \(\epsilon \)-neighborhood of \(z = 0 \).
2 Residues – Section 69 of Brown and Churchill

When z_0 is an isolated singular point of f, there exists $R_2 > 0$ such that f is analytic on the region $0 < |z - z_0| < R_2$.

$\implies f$ has a Laurent series representation about z_0:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} b_n (z - z_0)^{-n}, \quad 0 < |z - z_0| < R_2.$$

coefficients b_n are defined by

$$b_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{-n+1}} \, dz, \quad n = 1, 2, \ldots,$$

where C is any positively oriented simple closed contour around z_0 lying in $0 < |z - z_0| < R_2$.

\implies When $n = 1$, we obtain

$$\int_C f(z) \, dz = 2\pi i b_1. \quad (1)$$

The complex number b_1, which is the coefficient of $\frac{1}{z - z_0}$ in the Laurent expansion, is called the residue of f at the isolated singular point z_0, denoted

$$b_1 = \text{Res}_{z=z_0} f(z).$$

Equation (1) can then be written

$$\int_C f(z) \, dz = 2\pi i \, \text{Res}_{z=z_0} f(z).$$

Examples.

(1) Find $\int_C \frac{1}{z(z-1)} \, dz$, where C is the rectangle with vertices at $\frac{1}{2} \pm i$ and $2 \pm i$.

$f(z) = \frac{1}{z(z-1)}$ has two singularities, $z_0 = 0$ and $z_0 = 1$.

$z_0 = 1$ is the only singularity inside C, so we need to find the Laurent expansion of $f(z)$ about $z_0 = 1$.

$$\frac{1}{z(z - 1)} = \frac{1}{(1 + (z - 1))(z - 1)}$$

$$= \frac{1}{z - 1} \cdot \frac{1}{1 - (z - 1)}$$

$$= \frac{1}{z - 1} \left(1 - (z - 1) + (z - 1)^2 + \cdots \right)$$

$$= \frac{1}{z - 1} - 1 + (z - 1) - \cdots .$$

\[\implies \text{Res}_{z=1} f(z) = 1 \]

\[\implies \int_C \frac{1}{z(z - 1)} \, dz = 2\pi i (1) = \left[2\pi i \right] . \]

(2) Find $\int_C \frac{1}{z(z - 1)} \, dz$, where C is the circle $|z| = \frac{1}{2}$.

In this case, $z_0 = 0$ is the only singularity inside C, so we need the Laurent expansion of $f(z)$ about $z_0 = 0$.

$$\frac{1}{z(z - 1)} = \frac{-1}{z(1-z)}$$

$$= \frac{-1}{z} \left(1 + z + z^2 + \cdots \right)$$

$$= \frac{-1}{z} - 1 - z - \cdots .$$

\[\implies \text{Res}_{z=0} f(z) = -1 \]

\[\implies \int_C \frac{1}{z(z - 1)} \, dz = 2\pi i (-1) = \left[-2\pi i \right] . \]

NOTE: Examples (1) and (2) may alternately be done by noting that

$$\frac{1}{z(z - 1)} = \frac{-1}{z} + \frac{1}{z - 1}$$

and using the Cauchy-Goursat Theorem and Cauchy’s Integral Formula to compute the integrals.

(3) Find $\int_C \frac{z}{z^2 + 4z + 4} \, dz$, where C is the circle $|z + 2| = 1$.

- **Singularities:** $z^2 + 4z + 4 = 0 \implies (z + 2)^2 = 0 \implies z = -2$. $z_0 = -2$ is the only singularity, and $z_0 = -2$ is inside C.

• Find the Laurent series expansion of \(f(z) = \frac{z}{z^2 + 4z + 4} \) about \(z_0 = -2 \).

\[
\frac{z}{z^2 + 4z + 4} = \frac{z}{(z + 2)^2} = \frac{z + 2 - 2}{(z + 2)^2} = \frac{1}{z + 2} - \frac{2}{(z + 2)^2}
\]

\(\implies \text{Res}_{z=-2} f(z) = 1 \)

\(\implies \int_C \frac{z}{z^2 + 4z + 4} \, dz = 2\pi i (1) = 2\pi i \).

3 Cauchy’s Residue Theorem – Section 70 of Brown and Churchill

If a function \(f \) is analytic inside a simple closed contour at all but a finite number of points, those singular points must be isolated.

Theorem 1 (Cauchy’s Residue Theorem). Let \(C \) be a positively oriented simple closed contour. If \(f \) is analytic inside \(C \) except for a finite number of singular points \(z_k, k = 1, 2, \ldots, n \) inside \(C \), then

\[
\int_C f(z) \, dz = 2\pi i \sum_{k=1}^{n} \text{Res}_{z=z_k} f(z).
\]

The proof is a fairly straightforward application of the Cauchy Integral and Cauchy-Goursat theorems.

Examples.

(1) Evaluate \(\int_C \frac{1}{z(z + 1)} \, dz \), where \(C \) is the circle \(|z| = 2|\).

The singularities of \(f(z) = \frac{1}{z(z + 1)} \) are \(z_0 = 0 \) and \(z_0 = 1 \), both of which are inside \(C \) \(\implies \)
we need to determine \(\text{Res}_{z=0} f(z) \) and \(\text{Res}_{z=-1} f(z) \).
\(z_0 = 0:\)

\[
\frac{1}{z(z+1)} = \frac{1}{z} \cdot \frac{1}{1-(-z)} \\
= \frac{1}{z} \left(1 - z + z^2 - z^3 + \cdots\right) \\
= \frac{1}{z} - 1 + z - z^2 + \cdots .
\]

\[\Rightarrow \text{Res }_{z=0} \frac{1}{z(z+1)} = 1.\]

\(z_0 = -1:\)

\[
\frac{1}{z(z+1)} = \frac{1}{z+1} \cdot \frac{1}{z+1-1} \\
= -\frac{1}{z+1} \cdot \frac{1}{1-(z+1)} \\
= -\frac{1}{z+1} \left(1 - (z+1) + (z+1)^2 - (z+1)^3 + \cdots \right) \\
= -\frac{1}{z+1} + 1 - (z+1) + \cdots .
\]

\[\Rightarrow \text{Res }_{z=-1} \frac{1}{z(z+1)} = -1.\]

So, \[\int_C \frac{1}{z(z+1)} \, dz = 2\pi i(1 + -1) = [0].\]

(2) Find \[\int_C \frac{z-1}{z(z+2)^2} \, dz, \] where \(C \) is the circle \(|z| = 4\).

\(f(z) = \frac{z-1}{z(z+2)^2} \) has two singularities, \(z_0 = 0 \) and \(z_0 = -2 \), both of which are inside \(C \).

\(z_0 = 0: \) First, \[\frac{z-1}{z(z+2)^2} = \frac{1}{(z+2)^2} - \frac{1}{z} \cdot \frac{1}{(z+2)^2}. \] Since

\[
\frac{1}{z+2} = \frac{1}{2} \left(1 + \frac{z}{2}\right) \\
= \frac{1}{2} \cdot \frac{1}{1 - \left(-\frac{z}{2}\right)} \\
= \frac{1}{2} \left(1 - \frac{z}{2} + \left(\frac{z}{2}\right)^2 - \cdots \right).
\]
So,

\[
\frac{1}{(z+2)^2} = \left[\frac{1}{2} \left(1 - \frac{z}{2} + \left(\frac{z}{2} \right)^2 - \cdots \right) \right]^2
= \frac{1}{4} \left(1 - \frac{z}{2} + \left(\frac{z}{2} \right)^2 - \cdots \right) \left(1 - \frac{z}{2} + \left(\frac{z}{2} \right)^2 - \cdots \right)
= \frac{1}{4} \left(1 - z + \frac{3}{4}z^2 + \cdots \right)
= \frac{1}{4} - \frac{1}{4}z + \frac{3}{4}z^2 + \cdots .
\]

We thus see that

\[
\frac{1}{z} \cdot \frac{1}{(z+2)^2} = \frac{1}{4} \cdot \frac{1}{z} - \frac{1}{4} + \frac{3}{4}z - \cdots .
\]

Therefore,

\[
\text{Res}_{z=0} \frac{z-1}{z(z+2)^2} = 0 - \frac{1}{4} = -\frac{1}{4}.
\]

\(z_0 = -2\): In this case, we want

\[
\frac{z-1}{z(z+2)^2} = \frac{1}{(z+2)^2} \cdot \frac{z-1}{z}
= \frac{1}{(z+2)^2} \left(1 - \frac{1}{z} \right).
\]

Since

\[
\frac{1}{z} = \frac{1}{(z+2) - 2}
= -\frac{1}{2} \cdot \frac{1}{1 - \left(\frac{z+2}{2} \right)}
= -\frac{1}{2} \left(1 + \frac{z+2}{2} + \left(\frac{z+2}{2} \right)^2 + \left(\frac{z+2}{2} \right)^2 + \cdots \right)
= -\frac{1}{2} - \frac{1}{4}(z+2) - \frac{1}{8}(z+2)^2 - \frac{1}{16}(z+2)^3 - \cdots ,
\]

we obtain

\[
\frac{z-1}{z(z+2)^2} = \frac{1}{(z+2)^2} \left(1 - \left(-\frac{1}{2} - \frac{1}{4}(z+2) - \frac{1}{8}(z+2)^2 - \frac{1}{16}(z+2)^3 - \cdots \right) \right)
= \frac{1}{(z+2)^2} \left(\frac{3}{2} + \frac{1}{4}(z+2) + \frac{1}{8}(z+2)^2 + \frac{1}{16}(z+2)^3 + \cdots \right)
= \frac{3}{2(z+2)^2} + \frac{1}{4} \frac{1}{z+2} + \frac{1}{8} + \frac{1}{16}(z+2) + \cdots
\Rightarrow \text{Res}_{z=-2} \frac{z-1}{z(z+2)^2} = \frac{1}{4}.
\]
So,
\[\int_{C} \frac{z - 1}{z(z + 2)^2} \, dz = 2\pi i \left(-\frac{1}{4} + \frac{1}{4} \right) = 0. \]

4 The Three Types of Isolated Singular Points – Section 72 of Brown and Churchill

Definitions.

1. If \(z_0 \) is an isolated singularity of \(f \) and if all but a finite number of the \(b_n \) in the Laurent series for \(f \) are zero, then \(z_0 \) is a pole of \(f \). If \(b_n = 0 \) for \(n \geq N \), then \(z_0 \) is a pole of order \(N \). If \(z_0 \) is a first order pole, then \(z_0 \) is called a simple pole.

2. If an infinite number of \(b_n \)'s are nonzero, then \(z_0 \) is an essential singularity.

3. If \(b_n = 0 \) for all \(n \), then \(z_0 \) is a removable singularity.

Idea: \(f \) has a pole of order \(k \) at \(z_0 \) if and only if its Laurent expansion about \(z_0 \) has the form

\[
\frac{b_k}{(z - z_0)^k} + \cdots + \frac{b_1}{z - z_0} + \sum_{n=0}^{\infty} a_n (z - z_0)^n.
\]

Examples. Write the principal part of \(f \) and determine the type of singularity of the following.

(1) \(f(z) = \frac{\cos z}{z^2} \)

\(z_0 = 0 \) is the only singularity, and

\[
\begin{align*}
\frac{\cos z}{z^2} &= \frac{1}{z^2} \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \cdots \right) \\
&= \frac{1}{z^2} - \frac{1}{2!} + \frac{z^2}{4!} - \cdots.
\end{align*}
\]

So, the principal part of \(f \) at \(z_0 = 0 \) is \(\frac{1}{z^2} \). Therefore, \(z_0 = 0 \) is a pole of order 2.

(2) \(f(z) = \frac{e^z - 1}{z^2} \)
\(z_0 = 0 \) is the only singularity, and
\[
\frac{e^z - 1}{z^2} = \frac{1}{z^2} \left(\left(1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots \right) - 1 \right) \\
= \frac{1}{z^2} \left(z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots \right) \\
= \frac{1}{z} + \frac{1}{2!} + \frac{z}{3!} + \cdots .
\]

So, the principal part of \(f \) at \(z_0 = 0 \) is \(\frac{1}{z} \). Therefore, \(z_0 = 0 \) is a simple pole.

(3) \(f(z) = \frac{\sin z}{z} \)

\(z_0 = 0 \) is the only singularity, and
\[
\frac{\sin z}{z} = \frac{1}{z} \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots \right) \\
= 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \cdots .
\]

In this case, the principal part of \(f \) at \(z_0 = 0 \) is 0, and \(z_0 = 0 \) is a removable singularity.

(4) \(f(z) = e^{i\frac{z}{z}} \)

Again, \(z_0 = 0 \) is the only singularity, and
\[
e^{i\frac{z}{z}} = 1 + \frac{1}{z} + \frac{1}{2!} \cdot \frac{1}{z^2} + \cdots .
\]

So, the principal part of \(f \) at \(z_0 = 0 \) is
\[
\frac{1}{z} + \frac{1}{2!} \cdot \frac{1}{z^2} + \cdots ,
\]

which has infinitely many terms, so \(z_0 = 0 \) is an essential singularity.

NOTE: If \(z_0 \) is a removable singularity of \(f \), then
\[
f(z) = \sum_{n=0}^{\infty} a_n(z - z_0)^n,
\]
a convergent power series. If we define \(f(z_0) = a_0 \), then \(f \) is analytic at \(z_0 \).

5 Residues at Poles – Sections 73-74 of Brown and Churchill

A convenient way to determine residues at poles is described in the following theorem.
Theorem 2. An isolated singular point z_0 of a function f is a pole of order m if and only if $f(z)$ can be written in the form

$$f(z) = \frac{\phi(z)}{(z - z_0)^m},$$

where $\phi(z)$ is analytic at z_0 and $\phi(z_0) \neq 0$. Moreover,

- $\text{Res}_{z=z_0} f(z) = \phi(z_0)$ if $m = 1$, and
- $\text{Res}_{z=z_0} f(z) = \frac{\phi^{(m-1)}(z_0)}{(m-1)!}$ if $m \geq 2$.

Examples. Find the residues of the following functions.

1. $f(z) = \frac{z}{z^2 + 1}$

 The singularities of $f(z)$ are $z_0 = \pm i$, both of which are simple poles.

 $z_0 = -i$:
 $$f(z) = \frac{z}{(z + i)(z - i)} = \frac{z}{z - i} = \frac{\phi(z)}{z - i},$$

 Then, $\phi(z)$ is analytic at $z_0 = -i$ and $\phi(-i) \neq 0$.

 $$\Rightarrow \text{Res}_{z=-i} f(z) = \phi(-i) = \frac{-i}{-i - i} = \frac{1}{2}.$$

 $z_0 = i$:
 $$f(z) = \frac{z}{(z + i)(z - i)} = \frac{z}{z + i} = \frac{\phi(z)}{z + i},$$

 Then, $\phi(z)$ is analytic at $z_0 = i$ and $\phi(i) \neq 0$.

 $$\Rightarrow \text{Res}_{z=i} f(z) = \phi(i) = \frac{i}{i + i} = \frac{1}{2}.$$

2. $f(z) = \frac{z^2}{(z - 1)^3(z + 1)}$

 $f(z)$ has two singularities, $z_0 = -1$ and $z_0 = 1$.

 $z_0 = -1$:
 $$f(z) = \frac{\frac{z^2}{z + 1}}{(z - 1)^3} = \frac{\phi(z)}{z + 1} \Leftrightarrow z_0 = -1 \text{ is a simple pole.}$$

 Since $\phi(z)$ is analytic at $z_0 = -1$ and $\phi(-1) \neq 0$,

 $$\text{Res}_{z=-1} f(z) = \phi(-1) = \frac{(-1)^2}{(-1 - 1)^3} = -\frac{1}{8}.$$
\[z_0 = 1: \]
\[f(z) = \frac{z^2}{(z+1)(z-1)^3} = \frac{\phi(z)}{(z-1)^3} \]
\[\iff z_0 = 1 \text{ is a pole of order } 3. \]

Since \(\phi(z) \) is analytic at \(z_0 = 1 \) and \(\phi(1) \neq 0, \)
\[\text{Res}_{z=1} f(z) = \frac{\phi''(z)}{2!} \bigg|_{z=1}. \]

We have
\[\phi(z) = \frac{z^2}{z+1} \Rightarrow \phi'(z) = \frac{2z + z^2}{(z+1)^2} \Rightarrow \phi''(z) = \frac{2}{(z+1)^3}. \]
\[\implies \text{Res}_{z=1} f(z) = \frac{1}{2} \cdot \frac{2}{(1+1)^3} = \frac{1}{8}. \]

6 Zeros of Analytic Functions – Section 75 of Brown and Churchill

Suppose that \(f \) is analytic at a point \(z_0 \). If \(f(z_0) = 0 \) and \(f^{(j)}(z_0) = 0 \) for \(j = 1, 2, \ldots, m - 1 \), and \(f^{(m)}(z_0) \neq 0 \), then \(z_0 \) is a zero of order \(m \).

Theorem 3. Let \(f \) be a function analytic at a point \(z_0 \). \(f \) has a zero of order \(m \) at \(z_0 \) if and only if there exists a function \(g \) analytic at \(z_0 \) with \(g(z_0) \neq 0 \) such that
\[f(z) = (z - z_0)^m g(z). \]

Example. Consider the function \(f(z) = z^3 - 4z^2 + 4z. \)

We can write \(f(z) = z(z-2)^2. \)

Therefore, has a zero of order \(m = 2 \) at \(z_0 = 2 \) and a zero of order \(m = 1 \) at \(z_0 = 0. \)

Note: If \(f \) is an analytic function not identically 0, then its zeros are isolated.

7 Zeros and Poles – Section 76 of Brown and Churchill

The following theorem gives us a way to determine poles for quotients of analytic functions.

Theorem 4. Suppose two functions \(p \) and \(q \) are analytic at a point \(z_0 \), \(p(z_0) \neq 0 \), and \(q \) has a zero of order \(m \) at \(z_0 \). Then, \(f(z) = \frac{p(z)}{q(z)} \) has a pole of order \(m \) at \(z_0. \)
Proof. Since \(q(z) \) has a zero of order \(m \) at \(z_0 \), we can write \(q(z) = (z-z_0)^m g(z) \), where \(g(z_0) \neq 0 \). Then,

\[
f(z) = \frac{p(z)}{q(z)} = \frac{p(z)}{(z-z_0)^m g(z)} = \frac{p(z)}{(z-z_0)^m} g(z) = \frac{\phi(z)}{(z-z_0)^m},
\]
where \(\phi(z) \) is analytic and nonzero at \(z_0 \). Therefore, \(z_0 \) is a pole of order \(m \). \(\square \)

Example. Determine the order of the pole \(z_0 = 0 \) for

\[
f(z) = \frac{z - 1}{\sin^2 z}.
\]

Define \(p(z) = z - 1 \) and \(q(z) = \sin^2 z \). Then,

- \(p \) and \(q \) are entire (and so analytic at \(z_0 = 0 \)).
- What order zero of \(q(z) \) is \(z_0 = 0 \)?
 \[
 q(z) = \sin^2 z \rightarrow q(0) = 0 \\
 q'(z) = 2 \sin z \cos z = \sin 2z \quad \Longrightarrow \quad q'(0) = 0 \\
 q''(z) = 2 \cos 2z \quad \Longrightarrow \quad q''(0) = 2 \neq 0.
 \]
So, \(z_0 = 0 \) is a zero of order 2 \(\Longrightarrow \) \(z_0 = 0 \) is a pole of \(f \) of order 2.

Theorem 5. Let functions \(p \) and \(q \) be analytic at a point \(z_0 \). If \(p(z_0) \neq 0 \), \(q(z_0) = 0 \), and \(q'(z_0) \neq 0 \), then \(z_0 \) is a simple pole of \(\frac{p(z)}{q(z)} \), and

\[
\text{Res}_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}.
\]

Examples. Find the residues of the following functions at the indicated point.

(1) \(\frac{e^{z^2}}{z - 1}, \ z_0 = 1 \)

\[
\frac{e^{z^2}}{z - 1} = \frac{p(z)}{q(z)} \\
p(1) = e^{1^2} = e^1 \neq 0 \quad \text{and} \quad p, \ q \ \text{are entire.} \\
q(1) = 0 \\
q'(z) = 1 \quad \Longrightarrow \quad q'(1) = 1 \neq 0.
\]
So,

\[
\text{Res}_{z=1} \frac{e^{z^2}}{z - 1} = \frac{p(1)}{q'(1)} = \frac{e^1}{1} = e^1.
\]
(2) \(\frac{z + 2}{z^2 - 2z}, \ z_0 = 0 \)

\[
\frac{z + 2}{z^2 - 2z} = \frac{p(z)}{q(z)}
\]

\(\implies \) \(p, q \) are entire.

\[
p(0) = 2 \neq 0 \\
q(0) = 0 \\
q'(z) = 2z - 2 \implies q'(0) = -2 \neq 0.
\]

So,

\[
\text{Res}_{z=0} \frac{z + 2}{z^2 - 2z} = \frac{p(0)}{q'(0)} = \frac{2}{-2} = -1.
\]

(3) \(\frac{z^2}{z^4 - 1}, \ z_0 = i \)

\[
\frac{z^2}{z^4 - 1} = \frac{p(z)}{q(z)}
\]

\(\implies \) \(p, q \) are entire.

\[
p(i) = i^2 = -1 \\
q(i) = 0 \\
q'(z) = 4z^3 \implies q'(i) = 4(i^3) = -4i \neq 0.
\]

So,

\[
\text{Res}_{z=i} \frac{z^2}{z^4 - 1} = \frac{p(i)}{q'(i)} = \frac{-1}{-4i} = \frac{-i}{4}.
\]