Finite Groups of Derangements on the n-Cube II

Larry Cusick
Department of Mathematics
California State University, Fresno.
Fresno, California, USA
larryc@csufresno.edu

Oscar Vega
Department of Mathematics
California State University, Fresno.
Fresno, California, USA
ovega@csufresno.edu

Submitted: Mar 23, 2011; Accepted: July 4, 2011; Published: XX
Mathematics Subject Classification: Primary 05E18; Secondary 05E10, 52C99, 20B25

Abstract
Given $k \in \mathbb{N}$ and a finite group G, it is shown that G is isomorphic to a subgroup of the group of symmetries of some n-cube in such a way that G acts freely on the set of k-faces, if and only if, $\gcd(k, \lvert G \rvert) = 2^s$ for some non-negative integer s.

The proof of this result is existential but does give some ideas on what n could be.

1 Preliminaries
The n-dimensional cube, or simply n-cube, is denoted by Q_n and will be represented as having vertices the points of $\{1, -1\}^n \subset \mathbb{R}^n$, and edges joining any two vertices that differ in exactly one component. A k-face F of the n-cube is a k-subcube whose vertices have $n - k$ of the coordinates predetermined,

$$F = \{ y = (y_1, \ldots, y_n) \in Q_n; \ y_i = a_{i_1}, \ldots, y_{i_{n-k}} = a_{i_{n-k}} \},$$

where, of course, each $a_{i_j} = \pm 1$.

It is known that the automorphism group of the cube is $B_n = S_n \wr \mathbb{Z}_2$, the wreath product of S_n and \mathbb{Z}_2 (in this article we will use $\mathbb{Z}_2 = \{\pm 1\}$). This group is sometimes called the hyperoctahedral group, or the group of signed permutations; it is a Coxeter group of type $B_n = C_n$, and thus a Weyl group. We denote the elements in B_n by $(\sigma; \mathbf{x})$, where $\sigma \in S_n$ and $\mathbf{x} = (x_1, x_2, \ldots, x_n) \in (\mathbb{Z}_2)^n$. The multiplication is given by

$$(\sigma; \mathbf{x})(\tau; \mathbf{y}) = (\sigma \tau; \mathbf{x}^\tau \mathbf{y})$$

where $\mathbf{x}^\tau = (x_{\tau(1)}, x_{\tau(2)}, \ldots, x_{\tau(n)})$, and $\mathbf{x}^\tau \mathbf{y}$ is the standard component-to-component multiplication in \mathbb{R}^n. The (right) action of B_n on Q_n is given by $(\sigma, \mathbf{x})\mathbf{y} = \mathbf{y}^\sigma \mathbf{x}$.

*The authors would like to thank the referees for their helpful advice, which greatly improved the exposition.
Definition 1 With the same notation as above.

1. Let G be a group acting on a set X. We say that $g \in G$ acts freely on X if and only if g does not fix any points in X.

2. A derangement of the k-faces of Q_n is an element of B_n that acts freely on the set of all k-faces of Q_n.

3. A subgroup H of B_n is said to be a derangement of the k-faces of Q_n if every non-identity element in H is a derangement of the k-faces of Q_n.

4. A group G will be called a derangement of the k-faces of Q_n if it is isomorphic to subgroup of B_n that is a derangement of the k-faces of Q_n. In such a case we introduce the notation $G \vdash_k B_n$.

We want to study conditions for a finite group G to be a derangement of the k-faces of some Q_n. The main tool we will use in this article is the Chen-Stanley criterion. In order to get to it we first need to set some notation.

Definition 2 If $\sigma = (i_1, i_2, \ldots, i_s)$ is a cycle in S_n and $x \in (\mathbb{Z}_2)^n$, then

$$x_\sigma = x_{i_1}x_{i_2}\cdots x_{i_s}.$$

Theorem 1 (Chen-Stanley Criterion [2]) A symmetry $(\pi; x) \in B_n$ is a derangement of the set of k-faces in Q_n if, and only if, for every k-element π-invariant subset $I \subset \{1, \ldots, n\}$, $x_\sigma = -1$ for some cycle σ in π disjoint from I.

Note that, in particular, $(\pi; x) \in B_n$ is a vertex-derangement (i.e. $k = 0$) if, and only if, $x_\sigma = -1$ for some cycle σ in π. This is because there is one zero-element subset (the empty set), which is π-invariant (vacuously) and every cycle is disjoint from the empty set.

In a previous article [3], the first author proved the following results.

Theorem 2 Assume k and n are always non-negative integers, and that the notation is the same used before

(i) If G is a group of odd order, then $G \vdash_k B_n$ for some n if, and only if, $\gcd(k, |G|) = 1$.

(ii) For any $m \geq 2$ and $k \geq 0$, $\mathbb{Z}_m \vdash_k B_n$ for some n if, and only if, $\gcd(k, m) = 2^s$ for some $s \geq 0$.

(iii) If G is a finite group and $G \vdash_k B_n$ for some $n \geq 1$, then $\gcd(k, |G|) = 2^s$ for some $s \geq 0$.

(iv) If $|G| = 2^s$, then for all k there exists an n such that $G \vdash_k B_n$.

The main theorem in this article (theorem 6) is, essentially, the converse of theorem 2 (iii). We now move on to present concepts and results that will be needed in the proof of theorem 6.
2 Sufficiency

We can think of \(G \vdash_k B_n \) as saying there is a faithful representation of \(G \) in the group of signed permutations, with an extra condition. Also, the hyperoctahedral group contains a copy of \(S_n \), so any faithful representation of a group \(G \) into \(S_n \) can be easily ‘extended’ to an injective homomorphism \(G \to B_n \).

Definition 3 With the same notation used in the previous section we define:

1. An element \((\pi; x) \in B_n\) is called sufficient if the following condition is satisfied.

 (a) If \((\pi; x)\) is of odd order, then \(\pi \) has no fixed points.

 (b) If \((\pi; x)\) is of even order, then there is a cycle \(\sigma \) in \(\pi \) for which \(x_\sigma = -1 \).

2. A representation of a group \(G \) into \(B_n \) is a homomorphism \(\rho : G \to B_n \).

3. A representation \(\rho : G \to B_n \) is called sufficient if \(\rho(g) \) is sufficient for every non-identity element \(g \in G \).

Our idea is to consider a sufficient representation of a group \(G \) and then ‘multiply’ it with itself to create a representation for \(G \) that satisfies the conditions of the Chen-Stanley criterion. The way of multiplying representations we will use is defined next.

Definition 4 The outer product \(\times : B_n \times B_m \to B_{n+m} \) is defined by

\[
(\pi; x) \times (\theta; y) = (\pi \times \theta; x, y)
\]

where \(\pi \times \theta \) is the permutation given by

\[
\pi \times \theta = \begin{pmatrix}
1 & 2 & \cdots & n & n + 1 & \cdots & n + m \\
\pi(1) & \pi(2) & \cdots & \pi(n) & n + \theta(1) & \cdots & n + \theta(m)
\end{pmatrix}
\]

The following fundamental construction will allow us to link the concepts of sufficient representation and derangements of \(k \)-faces.

Remark 1 (Fundamental Construction) Let \(\Delta_t, \Delta^{(i)}_t : B_n \to B_{nt} \) be given by \(\Delta_t(g) = g \times \cdots \times g \) and \(\Delta^{(i)}_t(g) = 1 \times \cdots \times g \times \cdots \times 1 \), where the element \(g \) appears only in the \(i \)-position. Note that \(\Delta_t(g) = \Delta^{(1)}_t(g) \cdots \Delta^{(n)}_t(g) \).

For a cycle \(\sigma = (i_1, \ldots, i_r) \), let \(\tilde{\sigma} \) be the set \(\{i_1, \ldots, i_r\} \), and for a permutation \(\pi \) of \(\{1, \ldots, n\} \) with cycle decomposition \(\pi = \sigma_1 \cdots \sigma_t \), let the cycle set of \(\pi \) be the set \(\{\tilde{\sigma}_1, \ldots, \tilde{\sigma}_t\} \).

Now notice that if we write \(\Delta_t(g) = (\theta; y) \) and \(\Delta^{(i)}_t(g) = (\theta^{(i)}; y^{(i)}) \), then the cycle set for \(\theta \) is equal to the disjoint union \(S = S_1 \cup \cdots \cup S_n \) where each \(S_i \) is the cycle set for \(\theta^{(i)} \).

It follows that for any fixed natural number \(k \), and \(g \in B_n \), there is a sufficiently large natural number \(t \) (\(t > k \) will do) so that any \(k \)-element subset \(I \subset \{1, \ldots, nt\} \) is disjoint from some cycle set \(S_i \) as derived from \(\Delta^{(i)}_t(g) \) above.
Theorem 3 Suppose $\gcd(|G|, k) = 2^s$ for some s, and there is a sufficient representation $\rho : G \to B_r$. Then $G \triangleright_k B_q$ for some q.

Proof. First, suppose $g = (\pi, x) \in B_r$ is an even order element and $x_\sigma = -1$ for some cycle σ in π. Then, by the Fundamental Construction above, there is a sufficiently large outer product $\Delta_t(g) = (\theta, y)$ for which if $I \subset \{1, \ldots, rt\}$ (θ-invariant or not) then I is disjoint from some cycle set S_i. By assumption, $x_\sigma = -1$. The corresponding equivalent cycle σ' in $\theta^{(i)}$, hence in θ, then satisfies $y_{\sigma'} = x_\sigma = -1$.

Now suppose $g = (\pi, x)$ is non-trivial and has odd order, π has no fixed points, and $\gcd(|g|, k) = 2^s$ for some s. Then, by necessity, $\gcd(|g|, k) = 1$. Let $\Delta_t(g) = (\theta, y)$. It also follows that θ is an odd order permutation, and so for any t there is no k-element θ-invariant subset $I \subset \{1, \ldots, rt\}$.

Now, we may assume $G < B_r$ and $\gcd(|G|, k) = 2^s$ for some s. By choosing t to be sufficiently large for all even order elements, we have a representation $\rho : G \to B_{rt}$ that satisfies the Chen-Stanley condition. □

What is now left to be proved is that every group G such that $\gcd(|G|, k) = 2^s$, for some s, admits a sufficient representation in some B_n. We will prove this in the next section by inducing a representation for G from its 2-Sylow subgroup (recall that the case $|G|$ odd has already been discussed in theorem 2). The following theorem justifies us wanting to induce from the 2-Sylow subgroup of G.

Theorem 4 (See [3]) Every finite 2-group has a sufficient representation.

3 Induced Representations

Suppose H is a subgroup of a finite group G of index m and $\rho_0 : H \to B_n$ is a faithful representation. There is a representation $\rho : G \to B_{nm}$, induced up from ρ_0 whose construction we will now describe.

First choose a complete set of coset representatives $\{g_1, \ldots, g_m\}$ of the subgroup H,

$$G = g_1H \cup \cdots \cup g_mH.$$

Pick $g \in G$. For each $i = 1, \ldots, m$, the product gg_i is in one of the cosets, and so $gg_i = g_{\theta(i)}h_i$ for some permutation θ of $\{1, \ldots, m\}$ and $h_i \in H$. We can write each $\rho_0(h_i) = (\pi_i; x_i)$. Then

$$\rho(g) = (\pi; x_1, \ldots, x_m)$$

where π is the permutation on $\{1, \ldots, nm\}$ that permutes the successive m-blocks via θ, while the block interiors are permuted via the corresponding π_i. Specifically, for $j \in \{1, \ldots, nm\}$, write $j = an + b$ where $0 \leq a < m$ and $0 < b \leq n$, then

$$\pi(j) = \pi_{\theta(a+1)}(b) + (\theta(a+1) - 1)n.$$
Remark 2 Note that if we restrict the induced representation \(\rho \) back to the subgroup \(H \), then \(\rho|_H \) is the direct sum of \(m \) copies of \(\rho_0 \) (see, for example, [5]). Thus, for \(h \in H \),

\[
\rho(h) = \rho_0(h) \times \cdots \times \rho_0(h) \text{ (} m \text{ times).}
\]

It follows immediately that if \(\rho_0 \) is sufficient, then so is \(\rho|_H \).

Lemma 1 If \(H \) is a finite 2-group, \(g \in G \) is an odd order element and \(\rho(g) = (\pi; x) \), then \(\pi \) has no 1-cycle. That is, \(\rho(g) \) is sufficient.

Proof. Suppose \(\pi \) has a 1-cycle. Then \(\theta \) must fix one block, that is \(\theta \) has a 1-cycle. So, \(gg_j = g_jh \) for some \(j = 1, \ldots, m \) and \(h \in H \). Thus, \(g_j^{-1}gg_j \in H \), that is \(g \) cannot be of odd order. \(\square \)

Theorem 5 (See [3]) Two symmetries \((\theta; y), (\pi; x) \in B_n\) are conjugate if, and only if, (1) \(\theta \) and \(\pi \) have the same cycle structure and (2) for some pairing of respectively equal length cycles in the two permutations \(\tau_1 \leftrightarrow \sigma_1, \ldots, \tau_s \leftrightarrow \sigma_s \), we have \(y_{\tau_j} = x_{\sigma_j} \) for all \(j = 1, \ldots, s \).

Corollary 1 If \(H \) is a Sylow 2-subgroup of \(G \), \(\rho_0 \) is sufficient, and \(g \in G \) is an element whose order is a power of 2, then \(\rho(g) \) is sufficient.

Proof. Since Sylow subgroups are conjugate, some conjugate of \(g \) is an element of \(H \). The corollary now follows from theorem 5, the assumptions and remark 2. \(\square \)

4 Main Theorem

It is our aim in this section to prove:

Theorem 6 (Main Theorem) Suppose \(G \) is a finite group and \(k \) is a non-negative integer with \(\gcd(|G|, k) = 2^s \) for some non-negative integer \(s \), then there is positive integer \(q \) for which \(G \triangleright_k B_q \).

According to theorem 3, the Main Theorem will follow from the assumptions if we can prove the existence of a sufficient representation \(\rho : G \to B_r \) for some \(r \).

Theorem 7 Every finite group has a sufficient representation.

We begin with a few lemmas.

Lemma 2 In \(B_m \), Suppose \(\alpha = (\sigma; x) \) where \(\sigma = (12 \ldots m) \) and \(\alpha^t = (\sigma^t; y) \). Then \(y_{\sigma} = (x_{\sigma})^{t/gcd(m,t)} \).
Proof. The permutation σ^t is a product of $(m/\gcd(m,t))$-cycles in the form $(i, i + t, \ldots, i + (m/\gcd(m,t) - 1)t)$ for $i = 1, \ldots, \gcd(m,t)$ where terms are mod m. And, the jth component of y is $y_j = x_j x_{j+1} \cdots x_{j+t-1}$ (indices computed mod m). Thus,

$$y_\sigma = (x_1 \cdots x_{i+t-1}) \cdots (x_{i+(m/\gcd(m,t)-1)t} \cdots x_{i+mt/\gcd(m,t)-1})$$

$$= x_1 x_2 \cdots x_{mt/\gcd(m,t)} \quad \text{(indices mod } m)$$

$$= (x_\sigma)^{t/\gcd(m,t)}.$$

Remark 3 It is known that any element $\alpha \in B_m$ is a product of disjoint bicycles. A bicycle is any element $(\sigma; x) \in B_m$ in which σ is a cycle and $x_j = 1$ if $\sigma(j) = j$. Two bicycles are called disjoint if their respective permutation parts are disjoint in the usual sense. See [3] for more details.

Lemma 3 Suppose $\alpha = (\pi; x) \in B_m$ and $x_\sigma = 1$ for every cycle σ in π. If $\alpha^t = (\pi^t; y)$, then $y_\psi = 1$ for every cycle ψ in π^t.

Proof. By factoring α as a product of disjoint bicycles, it is enough to prove the lemma for $\pi = \text{cycle}$. And, in fact, we may assume $\alpha = (\sigma; x) \in B_m$ where σ is the cycle $(12 \ldots m)$, as external products will allow us to ‘paste’ these cycles. Lemma 3 now follows from lemma 2. □

We can now prove the Main Theorem.

Proof.[Proof of Theorem 7] Let H be a Sylow 2-subgroup of G, of index m. By corollary 4, there is a sufficient representation $\rho_0 : H \to B_n$ for some n. Let $\rho : G \to B_{nm}$ be the representation induced up from ρ_0. We will prove ρ is sufficient.

Pick $g \in G$, a non-identity element. If the order of g is odd or a power of 2, then $\rho(g)$ is sufficient by lemma 1 and corollary 1. Now assume the order of g to be $2^a(2b+1)$ with $a > 0$. Notre that $g' = g^{2b+1}$ has order 2^a, and so $\rho(g')$ is sufficient. It follows that if we write $\rho(g') = (\pi; x)$, then $x_\sigma = -1$ for some cycle σ in π. It follows from lemma 3, that if $\rho(g) = (\theta; y)$, then $y_\psi = -1$ for some cycle ψ in θ. That is, $\rho(g)$ is sufficient. □

References

