Decision Support Systems & Data Mining

How are Decision Support Systems and Data Mining Different?

- **Decision Support Systems:**

 Provide the decision maker with an explicit mathematical formula that can be used to build various decision scenarios

 $$z = 1.2(750 - y)$$
 $$0 < z < 450, 375 < y < 750$$

- **Data Mining:**

 Provides the decision maker with information about interesting relationships among variables that suggest certain decision scenarios

How are Decision Support Systems and Data Mining Similar?

They are both based on relational, rather than factual, information.
What is Relational Information, and where does it come from?

Factual Data

Fuel Purchase Data:
• date
• mileage
• #gallons

Tire Pressure Adjustment data:
• date

Factual Information

Fuel Purchase Information:
MPG

Proper tire pressure improves fuel efficiency

Relational Information

is related to

Tire Pressure (PSI) → Fuel efficiency (MPG) ➔ Model

MPG = f (PSI)
not directly controllable
directly controllable

Why Build Models?
To control those things that cannot be controlled directly via
controlling those things that CAN be controlled directly

Factual Information: What happens
Relational Information: How factors underlying what happens are related
The Anatomy of Mathematical Models

Mathematical Model

\[Y = aX_1 + bX_2 + c + d \]

\(Y \) = Dependent/Outcome Variable
That which we want to control/predict, but cannot do so directly
It is the outcome/consequence of other factors that we can control directly

\(X_1, X_2 \) = Independent/Decision/Controllable Variables
Those factors that we can control directly, and whose correct values are in doubt (hence the need for a DSS)

\(a, b, c, d \) = Decision Parameters, Uncontrollable Variables, Environmental Factors
Those factors that affect the Dependent/Outcome Variable but cannot be controlled by the decision maker;
their values are “given” in a particular situation.

The Central Challenge of DSS:

- Given certain values of \(a/b/c/d \), what values of \(X_1/X_2 \) will produce the desired value of \(Y \)?

DSS ≠ DAS

DSS = Decision Support Systems
A system that supports/aids the decision maker; the decision is made by the decision maker
\(\Rightarrow \) semi-structured decision situations

DAS = Decision Automation System
A system that replaces the decision maker; the decision is delegated to the computer
\(\Rightarrow \) Fully-structured decision situations

For a brief but useful textbook coverage of DSS, read An Introduction to DSS
The role of Intermediate Variables in facilitating the derivation of the model:

\[
Y = X_1 + a, b, c, d + X_2
\]

Intermediate Variables:

- \(Y\)
- \(X_1\)
- \(a, b, c, d\)
- \(X_2\)

** PAYBACK **

- \(H-PRICE - R-PRICE\)
- \(A.20. \text{Extra cost of Hybrid}\)
- \(A.19. \text{Fuel Savings from Hybrid, per year}\)
- \(A.18. \text{Fuel cost for Hybrid, per year}\)
- \(A.17. \text{Fuel cost for Regular, per year}\)
- \(A.16. \# \text{Gallons used for Hybrid, per year}\)
- \(A.15. \# \text{Gallons used for Regular, per year}\)
- \(GAS\)
- \(DISTANCE\)
- \(H-MPG\)
- \(R-MPG\)
- \(DISTANCE/R-MPG\)
- \(DISTANCE/H-MPG\)
Using Mathematical Models

1. **What-if Analysis:**
 Given certain (hypothetical) values of the independent variables, what is the corresponding value of the dependent variable?

 \[
 \begin{align*}
 X_1 &= m \\
 X_2 &= n
 \end{align*}
 \]

2. **Goal-seek Analysis:**
 Given a certain desired value of the dependent variable, what values of the independent variables would produce it?

 \[
 \begin{align*}
 X_1 &= ? \\
 X_2 &= ?
 \end{align*}
 \]

3. **Sensitivity Analysis:**
 How sensitive is the dependent variable to changes in a certain independent variable when everything else is kept constant?

 \[
 \begin{align*}
 X_1 &= \text{m1} \\
 X_2 &= n \\
 \cdot m1 \\
 \cdot m2 \\
 \cdot m3 \\
 \cdot m4
 \end{align*}
 \]

4. **Optimization Analysis:**
 When the independent variable should not be maximized or minimized because it involves a tradeoff, which value of it will optimize the independent variable?

 \[
 \begin{align*}
 Y &= ? \\
 \cdot ? \\
 \cdot ? \\
 \cdot ? \\
 \cdot ?
 \end{align*}
 \]
A Case Study in Sensitivity Analysis

Question:

Which student’s Course Grade is more sensitive to their Term Paper Grade?

Which student’s term paper should the professor read more carefully?

Background:

Both students S1 and S2 have met all the course requirements except the term paper (worth 10%)
A Case Study in Optimization: T.A.C.O.

Parameter: Store activity level (Forecasted)

Customer-service staffing level per shift (80% of labor requirements)

Number of customers likely to balk (acceptable level < 2.5%)

Speed of Service (acceptable level < 3 m)

Revenue

Profit

Expense

Payroll

Duration/shift
Data Mining

Automated discovery of patterns in large transaction-based data sets and transforming them into an understandable structure for further use

Computer Models in Hollywood

The Verdict:

<table>
<thead>
<tr>
<th>Decision Process</th>
<th>ROI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional approach</td>
<td>-24.4%</td>
</tr>
<tr>
<td>Random selection</td>
<td>-18.6%</td>
</tr>
<tr>
<td>DSS model</td>
<td>+5.1%</td>
</tr>
</tbody>
</table>

Mining Consumer Data in Politics

Drug Industry Mines Physicians' Data to Boost Sales
Listen to it
Read it

The System

Doctor: Write Prescription
Pharmacist: Fill Prescription
Pharmaceutical Company: Promote Product

Life Style Variable
- car
- music
- drink

Voting behavior