1. Let $E \subseteq \mathbb{R}$ with $m^*(E) < \infty$.

(a) Prove that for all $\epsilon > 0$, there exists an open set O containing E such that $m(O) - m^*(E) < \epsilon$.

(b) Prove that there exists a G_δ-set G containing E such that $m(G) = m^*(E)$.

Proof: (a) Let $\epsilon > 0$. Since $m^*(E) < \infty$, it follows from the definition of the outer measure that there exists a countable collection of intervals $\{I_k\}_{k \geq 1}$ of E with

$$\sum_{k=1}^{\infty} l(I_k) < m^*(E) + \epsilon$$

Put $O = \bigcup_{k \geq 1} I_k$. Then O is open and $E \subseteq \bigcup_{k \geq 1} I_k = O$ since $\{I_k\}_{k \geq 1}$ is a ccoi of E. By countable subadditivity and the fact that $m(I_k) = l(I_k)$ for all $k \geq 1$, we get that

$$m(O) = m(\bigcup_{k \geq 1} I_k) \leq \sum_{k=1}^{\infty} m(I_k) = \sum_{k=1}^{\infty} l(I_k) < m^*(E) + \epsilon$$

Since $m^*(E) < \infty$, it follows that $m(O) - m^*(E) < \epsilon$.

(b) Let $k \geq 1$. It follows from (a) that there exists an open set O_k containing E with

$$m(O_k) - m^*(E) < \frac{1}{k}$$

Put $G = \cap_{k \geq 1} O_k$. Then G is of type G_δ and $E \subseteq G$ since $E \subseteq O_k$ for all $k \geq 1$.

Let $n \geq 1$. Then $E \subseteq G = \cap_{k \geq 1} O_k \subseteq O_n$. By monotonicity, we get that

$$m^*(E) \leq m(G) \leq m(O_n) < m^*(E) + \frac{1}{n}$$

So

$$m^*(E) \leq m(G) < m^*(E) + \frac{1}{n} \quad \text{for all } n \geq 1$$

Taking the limit as $n \to +\infty$, we get that

$$m^*(E) \leq m(G) \leq m^*(E)$$

So $m(G) = m^*(E)$.

2. Let $E \subseteq \mathbb{R}$. Prove that E is measurable if and only if for all $\epsilon > 0$, there exist a closed set F and an open set O such that $F \subseteq E \subseteq O$ and $m(O \setminus F) < \epsilon$.

Proof: Suppose first that E is measurable. Let $\epsilon > 0$. By Proposition 2.28 (i)(ii)(iv), there exist a closed set F and an open set O such that $F \subseteq E \subseteq O$ and $m(O \setminus E) < \frac{\epsilon}{2}$ and $m(E \setminus F) < \frac{\epsilon}{2}$. Since $O \setminus F = (O \setminus E) \cup (E \setminus F)$, it follows from countable subadditivity that

$$m(O \setminus F) = m((O \setminus E) \cup (E \setminus F)) \leq m(O \setminus E) + m(E \setminus F) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Suppose next that for all $\epsilon > 0$, there exist a closed set F and an open set O such that $F \subseteq E \subseteq O$ and $m(O \setminus F) < \epsilon$. Let $\epsilon > 0$. Let F be a closed set and O an open set such that $F \subseteq E \subseteq O$ and $m(O \setminus F) < \epsilon$.

Since $O \setminus E \subseteq O \setminus F$, it follows from monotonicity that

$$m^*(O \setminus E) \leq m(O \setminus F) < \epsilon$$

So E is measurable by Proposition 2.28(i)(ii). \qed
3. Show that the condition $\mu(E) < +\infty$ is needed in Proposition 2.29 on page 35 (Littlewood’s First Principle).

Solution: Let $E = \bigcup_{n=0}^{\infty} [2n, 2n+1]$. Put $\mu = 1$ (in fact, any positive real number will do the job since we will show that $\mu(\Omega \Delta E) = +\infty$ for any finite union of open intervals Ω). Let I_1, I_2, \ldots, I_k be open intervals. Put $\Omega = \bigcup_{j=1}^{k} I_j$.

Suppose first that I_j is an infinite interval for some $1 \leq j \leq k$, say $I_j = (a, b)$, where $a = -\infty$ or $b = +\infty$.

If $a = -\infty$ then $(-\infty, -M) \subseteq \Omega \setminus E \subseteq E \Delta \Omega$ for some $M > 0$ and so $+\infty = \mu((-\infty, -M)) \leq \mu(E \Delta \Omega)$. If $b = +\infty$ then $\cup_{n=0}^{\infty} [2n-1, 2n] \subseteq \Omega \setminus E \subseteq E \Delta \Omega$ for some $N \in \mathbb{N}$ and so $+\infty = \mu(\cup_{n=0}^{\infty} [2n-1, 2n]) \leq \mu(E \Delta \Omega)$.

Suppose next that I_j is finite for all $1 \leq j \leq k$. Then there exists a positive integer N such that $\Omega \subseteq (-2N, 2N)$. Hence $\cup_{n=N}^{\infty} (2n, 2n+1) \subseteq E \setminus \Omega \subseteq E \Delta \Omega$. So $+\infty = \mu(\cup_{n=N}^{\infty} (2n, 2n+1)) \leq \mu(E \Delta \Omega)$.

In all cases, we have that $\mu(E \Delta \Omega) = +\infty \geq 1 = \epsilon$. \hfill \Box

4. Let $0 < \alpha < 1$. Let F_α be the subset of $[0, 1]$ constructed in the same manner as the Cantor set except that each of the intervals removed at the n-th deletion stage has length $\frac{\alpha}{3^n}$.

(a) Show that F_α is closed.

(b) Find $\mu(F_\alpha)$.

Solution: For step 1, we remove from $C_0 := [0, 1]$ an open interval of length $\frac{\alpha}{3}$ and end up with a closed set C_1 with $\mu(C_1) = 1 - \frac{\alpha}{3}$. For step 2, we remove from C_1 two open intervals of length $\frac{\alpha}{3^2}$ and end up with a closed set C_2 with $\mu(C_2) = 1 - \frac{\alpha}{3} - \frac{2\alpha}{3^2}$.

For step 3, we remove from C_2 four open intervals of length $\frac{\alpha}{3^3}$ and end up with a closed set C_3 with $\mu(C_3) = 1 - \frac{\alpha}{3} - \frac{2\alpha}{3^2} - \frac{4\alpha}{3^3}$.

In general, after step n, we end up with a closed set C_n with $\mu(C_n) = 1 - \frac{\alpha}{3} - \frac{2\alpha}{3^2} - \frac{4\alpha}{3^3} - \cdots - \frac{2^{n-1}\alpha}{3^n} = 1 - \sum_{k=0}^{n-1} \frac{\alpha}{3} \left(\frac{2}{3}\right)^k$.

Then $F_\alpha = \cap_{n \geq 1} C_n$.

(a) Since C_n is closed for all $n \geq 1$, we see that F_α is the intersection of closed sets. So F_α is closed.

(b) Note that $C_1 \supseteq C_2 \supseteq C_3 \supseteq \cdots$ and $\mu(C_1) < 1$. By the continuity of the measure (Proposition 2.23(b)), we get that $\mu(F_\alpha) = \mu(\cap_{n \geq 1} C_n) = \lim_{n \to +\infty} \mu(C_n)$

Note that $\lim_{n \to +\infty} \mu(C_n) = \lim_{n \to +\infty} \left(1 - \sum_{k=0}^{n-1} \frac{\alpha}{3} \left(\frac{2}{3}\right)^k \right) = 1 - \sum_{k=0}^{+\infty} \frac{\alpha}{3} \left(\frac{2}{3}\right)^k = 1 - \frac{\alpha}{3} \frac{1}{1 - \frac{2}{3}} = 1 - \alpha$

So $\mu(F_\alpha) = 1 - \alpha$. \hfill \Box
5. We give the definition of a dense set:

If \(A \subseteq B \subseteq \mathbb{R} \) then \(A \) is dense in \(B \) if for all \(x, y \in B \) with \(x < y \) there exists \(a \in A \) such that \(x < a < y \).

Let \(C \) be the Cantor set. Prove that \([0, 1] \setminus C\) is dense in \([0, 1]\).

Proof: Let \(x, y \in [0, 1] \) with \(x < y \).
Suppose that \((x, y) \cap ([0, 1] \setminus C) = \emptyset\). Since \((x, y), C \subseteq [0, 1]\), we get that \((x, y) \subseteq C\). By monotonicity, we find that \(0 < y - x = l((x, y)) = m((x, y)) \leq m(C)\), a contradiction since \(m(C) = 0\).
Hence \((x, y) \cap ([0, 1] \setminus C) \neq \emptyset\). Let \(a \in (x, y) \cap ([0, 1] \setminus C) \). Then \(a \in [0, 1] \setminus C \) and \(x < a < y \) since \(a \in (x, y)\).
So \([0, 1] \setminus C\) is dense in \([0, 1]\).

\[\square \]

6. Let \(A \subseteq \mathbb{R} \) be bounded with \(m^*(A) > 0 \). Let \(C_A \) be a choice set for the rational equivalence relation on \(A \). Let \(E \) be a measurable subset of \(C_A \). Prove that \(m(E) = 0 \).

Proof: We use the same notations as in the proof of Theorem 2.25. We showed that
\[
A \subseteq \bigcup_{n=1}^{\infty} (C + q_n) \subseteq [-3N, 3N]
\]
Since \(E \subseteq C_A \subseteq A \), we get that
\[
\bigcup_{n=1}^{\infty} (E + q_n) \subseteq \bigcup_{n=1}^{\infty} (C + q_n) \subseteq [-3N, 3N]
\]
It follows from monotonicity that
\[
m^* \left(\bigcup_{n=1}^{\infty} (E + q_n) \right) \leq m([-3N, 3N]) = 6N < +\infty \quad (*)
\]
Since \(E \) is measurable, we have that \(E + q_n \) is measurable for all \(n \in \mathbb{N} \) by Proposition 2.22. Using countable additivity and the fact that the outer measure is translation-invariant, we get
\[
m \left(\bigcup_{n=1}^{\infty} (E + q_n) \right) = \sum_{n=1}^{\infty} m(E + q_n) = \sum_{n=1}^{\infty} m(E) = \begin{cases} 0 & \text{if } m(E) = 0 \\ +\infty & \text{if } m(E) > 0 \end{cases} \quad (**) \]
Combining \((*)\) and \((**)*\), we see that \(m(E) = 0 \).

Remark: There is an easier proof by noting the following:

If \(C \) is a choice set for some set \(A \), then any subset of \(C \) is a choice set for itself.

Indeed, let \(C \) be a choice set for some set \(A \). Then \(C \) contains exactly one element from each equivalence class on \(A \) of the rational equivalence relation. So any two distinct elements of \(C \) are not related. So if \(D \subseteq C \) then the equivalence classes on \(D \) are all singletons and \(D \) is its own choice set (in fact, the only choice set of \(D \)).

So let \(E \subseteq C_A \) be measurable. Suppose that \(m(E) > 0 \). Since \(E \) is bounded and is a choice set for \(E \), it follows from Theorem 2.25 that \(E \) is non-measurable, a contradiction. Hence \(m(E) = 0 \).