Section 4.3 - The Chinese Remainder Theorem

Exercise 4abc: Find all of the solutions to each system of linear congruences

\begin{align*}
(a) \quad & x \equiv 4 \pmod{11} \\
& x \equiv 3 \pmod{17} \\
(b) \quad & x \equiv 1 \pmod{2} \\
& x \equiv 2 \pmod{3} \\
& x \equiv 3 \pmod{5} \\
(c) \quad & x \equiv 0 \pmod{2} \\
& x \equiv 0 \pmod{3} \\
& x \equiv 1 \pmod{5} \\
& x \equiv 6 \pmod{7}
\end{align*}

Solution:

(a) Note that -3 is an inverse of 11 mod 17 and that 2 is an inverse of 17 mod 11. So using the construction outlined in class, we get

\[x \equiv (4)(17)(2) + (3)(11)(-3) \pmod{11 \cdot 17} \quad \text{so} \quad x = 37 + 187t \]

(b) First observe that

- \(3 \cdot 5 \equiv 1 \pmod{2} \)
- \(2 \cdot 5 \equiv 1 \pmod{3} \)
- \(2 \cdot 3 \equiv 1 \pmod{5} \)

Thus using the construction outlined in class

\[x \equiv (1)(15)(1) + (2)(10)(1) + (3)(6)(1) \pmod{2 \cdot 3 \cdot 5} \quad \text{so} \quad x = 53 + 30t \]

(c) The first two congruences imply that \(x \) is a multiple of 6. My favorite multiple of 6 is 6 itself. Lucky Day! The number 6 satisfies the other two congruences as well. Thus the set of all solutions is

\[x = 6 + 240t \quad (\text{since } 2 \cdot 3 \cdot 5 \cdot 7 = 240) \]

Exercise 12: If eggs are removed from a basket 2, 3, 4, 5, 6, and 7 at a time, there remain, respectively, 1, 2, 3, 4, 5, and 0 eggs. What is the least number of eggs that could have been in the basket?

Solution: We can use the Chinese remainder theorem to solve the congruences

\begin{align*}
& x \equiv 1 \pmod{2} \\
& x \equiv 2 \pmod{3} \\
& x \equiv 4 \pmod{5} \\
& x \equiv 0 \pmod{7}
\end{align*}

This gives that

\[x \equiv 1 \times 105 \times 1 + 2 \times 70 \times 1 + 4 \times 42 \times (-2) + 0 \times 30 \times (-3) \pmod{2 \times 3 \times 5 \times 7} \]

So \(x \equiv -91 \pmod{210} \). Naturally, there can’t be a negative number of eggs in the basket. But the CRT says that our solution is only unique up to multiples of 210, so let’s look at the congruence class of -91 modulo 210:

\[\{\ldots, -91, 119, 329, 539, \ldots\} \]

Note that 119 is the least positive residue. It can be verified than 119 satisfies all of the congruences demanded.
Exercise 18: Does the system

\[
\begin{align*}
 x &\equiv 1 \pmod{8} \\
 x &\equiv 3 \pmod{9} \\
 x &\equiv 2 \pmod{12}
\end{align*}
\]

have a solution? Be sure to explain why or why not.

Solution: Since 8 and 9 are relatively prime, we can use the Chinese remainder theorem to solve the congruences

\[
\begin{align*}
 x &\equiv 1 \pmod{8} \\
 x &\equiv 3 \pmod{9}
\end{align*}
\]

One comes up with \(x \equiv 57 \pmod{72}\). Thus since 12 divides 72, we must also have \(x \equiv 57 \pmod{12}\). But \(57 \not\equiv 2 \pmod{12}\) thus there can be no solutions to this system of congruences.

□

Section 5.1 - Divisibility Tests

Exercise *: Invent your own divisibility tests for 37, 101, and 33. I will give extra points for tests that I find especially inventive or useful.

Solution: Here are the ones that I thought of. They are all basically the same. (It was late and I was not feeling especially creative when I was typing these solutions.)

(37) Since \(1000 \equiv 1 \pmod{37}\), given a number \(n\), starting from the ones digit, break \(n\) into chunks of three digits. Then add all these three digit numbers together. The 3-chunk sum is divisible by 37 if and only if \(n\) is divisible by 37.

(101) Since \(100 \equiv -1 \pmod{101}\), given a number \(n\), starting from the ones digit, break \(n\) into chunks consisting of two digits. Then find the alternating sum of these two digit numbers. This alternating sum is divisible by 101 if and only if \(n\) is divisible by 101.

(33) Since \(100 \equiv 1 \pmod{33}\), given a number \(n\), starting from the ones digit, break \(n\) into chunks consisting of two digits. Then find the sum of these two digit numbers. This sum is divisible by 33 if and only if \(n\) is divisible by 33.

□

Section 6.1 - Wilson’s Theorem and Fermat’s Little Theorem

Exercise 4: Find the remainder when \(5!25!\) is divided by 31.

Solution: Suppose that \(x \equiv 5! 25! \pmod{31}\). Multiply both sides by \((26)(27)(28)(29)(30)\) to get

\[(26)(27)(28)(29)(30)x \equiv 5! 30! \pmod{31}\]

Using Wilson’s theorem we then get \((26)(27)(28)(29)(30)x \equiv -(5!) \pmod{31}\). Note then that \(26 \equiv -5, 27 \equiv -4, \ldots, 30 \equiv -1 \pmod{31}\) so we actually have

\[
\begin{align*}
 (-5)(-4)(-3)(-2)(-1)x &\equiv -(5!) \pmod{31} \quad \text{or} \\
 -120x &\equiv -120 \\
 -4x &\equiv -4 \quad \text{multiply both sides by } -8 \\
 32x &\equiv 32 \\
 x &\equiv 1
\end{align*}
\]

Thus the remainder is 1 when \(5!25!\) is divided by 31.

□
Exercise 6: Find the remainder when \(7 \times 8 \times 9 \times 15 \times 16 \times 17 \times 23 \times 24 \times 25 \times 43\) is divided by 11.

Solution: When we put on our mod 11 goggles we have

\[
\begin{align*}
15 &\equiv 4 \\
16 &\equiv 5 \\
17 &\equiv 6 \\
23 &\equiv 1 \\
24 &\equiv 2 \\
25 &\equiv 3 \\
43 &\equiv 10 \\
\end{align*}
\]

Thus

\[
7 \times 8 \times 9 \times 15 \times 16 \times 17 \times 23 \times 24 \times 25 \times 43 \equiv 10!
\]

\[
\equiv -1 \pmod{11} \quad \text{using Wilson's theorem}
\]

Thus the remainder is 10 when \(7 \times 8 \times 9 \times 15 \times 16 \times 17 \times 23 \times 24 \times 25 \times 43\) is divided by 11. \(\square\)

Exercise 12: Use Fermat’s Little Theorem to find the least positive residue of \(2^{10^6}\) modulo 7.

Solution: Note that \(10^6 = 6(166.666) + 4\). By Fermat’s little theorem we have that \(2^6 \equiv 1 \pmod{7}\). This gives

\[
2^{10^6} = (2^6)^{166.666} \cdot 2^4 \equiv 2^4 \equiv 2 \pmod{7}
\]

So 2 is the least positive residue of \(2^{10^6}\) modulo 7. \(\square\)

Exercise 16: Show that if \(n\) is composite integer other than 4, then \((n-1)! \equiv 0 \pmod{n}\).

Solution: Before we begin we should take note of the easy fact that if \(a|n\) then \(a \leq (n-1)\). Hence if \(a|n\) then \(a|(n-1)!\).

Also note that to show \((n-1)! \equiv 0 \pmod{n}\) it suffices to demonstrate that \(n\) divides \((n-1)!\). This is what we will do.

Let \(p\) be a prime factor of \(n\). Since \(n\) is composite \(n = pc\) where \(c \neq 1\). If \(c \neq p\) then we are done as \(p\) and \(c\) are two distinct divisors of \(n\), and hence two distinct divisors of \((n-1)!\). Thus \(n = pc\) divides \((n-1)!\) as desired.

If \(c = p\) then we have that \(n = p^2\). Since we are assuming that \(n \neq 4\) we must have that \(p \neq 2\). Thus observe that \(p\) and \(2p\) are both less than \(p^2 = n\) and hence \(p\) and \(2p\) are distinct factors of \((n-1)!\). Thus \(p(2p) = 2p^2 = 2n\) divides \((n-1)!\). It follows that \(n\) divides \((n-1)!\) as desired. \(\square\)